Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs

被引:45
作者
Fisher, DC [1 ]
McKenna, PA
Boyer, ED
机构
[1] Univ Colorado, Dept Math, Denver, CO 80217 USA
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
D O I
10.1016/S0166-218X(97)00126-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let omega(G), chi(G), A(G), bp(G), diam(G), eta(G), and gamma(G) be the clique number, chromatic number, adjacency matrix, biclique partition number, diameter, packing number, and domination number of a connected graph G. Mycielski constructed a graph mu(G) with omega(mu(G)) = omega(G) and chi(mu(G)) = chi(G)+1. We show: if G is Hamiltonian, then so is mu(G); if A(G) and A(G+nu) (G+nu is G joined with a vertex) are invertible, then so is A(mu(G)) and further bp(mu(G)) = \G\+1; eta(mu(G)) = eta(G); gamma(mu(G)) = gamma(G)+1; diam(mu(G)) = min(max(2, diam(G)), 4); and more. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 7 条
[1]   SIZE IN MAXIMAL TRIANGLE-FREE GRAPHS AND MINIMAL GRAPHS OF DIAMETER-2 [J].
BAREFOOT, C ;
CASEY, K ;
FISHER, D ;
FRAUGHNAUGH, K ;
HARARY, F .
DISCRETE MATHEMATICS, 1995, 138 (1-3) :93-99
[2]  
DOMKE G, 1989, CONGR NUMER, V66, P227
[3]  
Fisher D.C., 1995, C NUMER, V111, P136
[4]  
Horn R. A., 1986, Matrix analysis
[5]   THE FRACTIONAL CHROMATIC NUMBER OF MYCIELSKIS GRAPHS [J].
LARSEN, M ;
PROPP, J ;
ULLMAN, D .
JOURNAL OF GRAPH THEORY, 1995, 19 (03) :411-416
[6]  
Mycielski J, 1955, C MATH, V3, P161, DOI 10.4064/cm-3-2-161-162
[7]   A NEW PROOF OF A THEOREM OF GRAHAM AND POLLAK [J].
PECK, GW .
DISCRETE MATHEMATICS, 1984, 49 (03) :327-328