Piecewise monotone pointwise approximation

被引:16
作者
Dzyubenko, GA
Gilewicz, J
Shevchuk, IA
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 09, France
[2] Toulon Univ, Toulon, France
[3] Natl Acad Sci Ukraine, Inst Math, UA-252601 Kiev, Ukraine
关键词
polynomial approximation; piecewise monotone approximation;
D O I
10.1007/s003659900077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r, k, s be three integers such that r > 1, For All k, or r = 1, k less than or equal to 3. We prove the following: Proposition. Let Y := {y(i)}(i=t)(s) be a fixed collection of distinct points y(i) is an element of (-1, 1) and Pi(x) := (x - y(t)). (.)...(.) (x - y(s)). Let I := [-1, 1]. If f is an element of C-(r )(I) and f'(x)Pi(x) greater than or equal to 0, x is an element of I, then for each integer n greater than or equal to k + r - 1 there is an algebraic polynomial P-n = P-n(x) of degree less than or equal to n such that P-n'(x)Pi(x) greater than or equal to 0 and (1) \f(x) - P-n(x)\ less than or equal to B(1/n(2) + 1/n root 1-x(2))(r) omega(k) (f((r)); 1/n(2) + 1/n root 1-x(2)) for all x is an element of I, where omega(k) (f((r)); t) is the modulus of smoothness of the kth order of the function f((r)) and B is a constant depending only on r, k, and Y. If s = 1. the constant B does nor depend on Y except in the case (r = 1, k = 3). In addition it is shown that (l) does not hold for r = 1, k > 3.
引用
收藏
页码:311 / 348
页数:38
相关论文
共 40 条
[11]  
DZYADYK VK, 1958, DOKL AKAD NAUK SSSR, V121, P403
[12]  
DZYUBENKO GA, 1993, UKRAINIAN MATH J, V45, P40
[13]  
DZYUBENKO GA, 1994, CPT94P3067 CNRS LUM
[14]  
DZYUBENKO GA, 1994, UKRAINIAN MATH J, V46, P1467
[16]  
Gilewicz J., 1996, PRIKL MATH, V2
[17]  
ILIEV GL, 1978, ANAL MATH, V4, P181
[18]  
KOPOTUN KA, 1994, UKR MAT ZH, V46, P1266
[19]   POINTWISE ESTIMATES FOR CONVEX POLYNOMIAL-APPROXIMATION [J].
LEVIATAN, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :471-474
[20]   MONOTONE AND COMONOTONE POLYNOMIAL-APPROXIMATION REVISITED [J].
LEVIATAN, D .
JOURNAL OF APPROXIMATION THEORY, 1988, 53 (01) :1-16