Piecewise monotone pointwise approximation

被引:16
作者
Dzyubenko, GA
Gilewicz, J
Shevchuk, IA
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 09, France
[2] Toulon Univ, Toulon, France
[3] Natl Acad Sci Ukraine, Inst Math, UA-252601 Kiev, Ukraine
关键词
polynomial approximation; piecewise monotone approximation;
D O I
10.1007/s003659900077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r, k, s be three integers such that r > 1, For All k, or r = 1, k less than or equal to 3. We prove the following: Proposition. Let Y := {y(i)}(i=t)(s) be a fixed collection of distinct points y(i) is an element of (-1, 1) and Pi(x) := (x - y(t)). (.)...(.) (x - y(s)). Let I := [-1, 1]. If f is an element of C-(r )(I) and f'(x)Pi(x) greater than or equal to 0, x is an element of I, then for each integer n greater than or equal to k + r - 1 there is an algebraic polynomial P-n = P-n(x) of degree less than or equal to n such that P-n'(x)Pi(x) greater than or equal to 0 and (1) \f(x) - P-n(x)\ less than or equal to B(1/n(2) + 1/n root 1-x(2))(r) omega(k) (f((r)); 1/n(2) + 1/n root 1-x(2)) for all x is an element of I, where omega(k) (f((r)); t) is the modulus of smoothness of the kth order of the function f((r)) and B is a constant depending only on r, k, and Y. If s = 1. the constant B does nor depend on Y except in the case (r = 1, k = 3). In addition it is shown that (l) does not hold for r = 1, k > 3.
引用
收藏
页码:311 / 348
页数:38
相关论文
共 40 条
[1]   ON COMONOTONE APPROXIMATION [J].
BEATSON, RK ;
LEVIATAN, D .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (02) :220-224
[2]   DEGREE OF MONOTONE APPROXIMATION [J].
BEATSON, RK .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 74 (01) :5-14
[3]  
BRUDNYI YA, 1963, DOKL AKAD NAUK SSSR, V188, P1237
[4]   POINTWISE ESTIMATES FOR MONOTONE POLYNOMIAL-APPROXIMATION [J].
DEVORE, RA ;
YU, XM .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (04) :323-331
[5]   MONOTONE APPROXIMATION BY POLYNOMIALS [J].
DEVORE, RA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (05) :906-921
[6]  
DEVORE RA, 1997, P CHAM 1996, P95
[7]  
DEVORE RA, 1976, APPROXIMATION THEORY, V2, P117
[8]   SHAPE-PRESERVING POLYNOMIAL-APPROXIMATION IN C[-1,1] [J].
DITZIAN, Z ;
JIANG, D ;
LEVIATAN, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 :309-316
[9]  
Ditzian Z., 1987, Moduli of Smoothness
[10]  
Dzyadyk V. K., 1977, INTRO THEORY UNIFORM