Positive recurrent of stochastic coral reefs model

被引:2
作者
Huang, Zaitang [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[3] Guangxi Teachers Educ Univ, Sch Math & Stat, Nanning 530023, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Coral reefs; Permanence; Stationary distribution; Markov semigroups; Geometric control theory; STABILITY; DYNAMICS;
D O I
10.1016/j.physa.2017.05.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we discuss permanence and ergodicity of a stochastic coral reefs model. One of the distinctive features of our results is that our results enables characterization of the support of a unique invariant probability measure by Lie groups and geometric control theory. It is proved that the densities either converges to an invariant density or converges weakly to a singular measure. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:751 / 761
页数:11
相关论文
共 21 条
  • [1] Aida S, 1993, Pitman research notes in mathematics series, V284, P3
  • [2] The effect of fishing on hysteresis in Caribbean coral reefs
    Blackwood, Julie C.
    Hastings, Alan
    Mumby, Peter J.
    [J]. THEORETICAL ECOLOGY, 2012, 5 (01) : 105 - 114
  • [3] Dang N. H., 2014, J DIFFER EQUATIONS, V6, P2078
  • [4] HARRIS OPERATORS
    FOGUEL, SR
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (3-4) : 281 - 309
  • [5] Dynamics of stochastic Lorenz-Stenflo system
    Huang, Zaitang
    Cao, Junfei
    Jiang, Ting
    [J]. NONLINEAR DYNAMICS, 2014, 78 (03) : 1739 - 1754
  • [6] CATASTROPHES, PHASE-SHIFTS, AND LARGE-SCALE DEGRADATION OF A CARIBBEAN CORAL-REEF
    HUGHES, TP
    [J]. SCIENCE, 1994, 265 (5178) : 1547 - 1551
  • [7] Dynamics of a stochastic HIV-1 infection model with logistic growth
    Jiang, Daqing
    Liu, Qun
    Shi, Ningzhong
    Hayat, Tasawar
    Alsaedi, Ahmed
    Xia, Peiyan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 469 : 706 - 717
  • [8] Lasota A., 1994, SPRINGER APPL MATH S, V97
  • [9] Mathematical analysis of coral reef models
    Li, Xiong
    Wang, Hao
    Zhang, Zheng
    Hastings, Alan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 352 - 373
  • [10] STABILITY OF MARKOVIAN PROCESSES .3. FOSTER-LYAPUNOV CRITERIA FOR CONTINUOUS-TIME PROCESSES
    MEYN, SP
    TWEEDIE, RL
    [J]. ADVANCES IN APPLIED PROBABILITY, 1993, 25 (03) : 518 - 548