Symmetric duality in multiobjective programming involving generalized cone-invex functions

被引:47
作者
Khurana, S [1 ]
机构
[1] Univ Delhi, Dept Math, Daulat Ram Coll, Delhi 110007, India
关键词
mathematical programming; multiobjective symmetric duality; cones; pseudoinvexity;
D O I
10.1016/j.ejor.2003.03.004
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, cone-pseudoinvex and strongly cone-pseudoinvex functions are defined. A pair of Mond-Weir type symmetric dual multiobjective programs is formulated over arbitrary cones. Weak duality, strong duality and converse duality theorems are established using the above-defined functions. A self-duality theorem is also given by assuming the functions involved to be skew-symmetric. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:592 / 597
页数:6
相关论文
共 11 条
[1]   SYMMETRIC DUALITY IN NONLINEAR PROGRAMMING [J].
BAZARAA, MS ;
GOODE, JJ .
OPERATIONS RESEARCH, 1973, 21 (01) :1-9
[2]  
Cambini R., 1996, Optimization, V36, P11, DOI 10.1080/02331939608844161
[3]   A note on pseudo-invexity and symmetric duality [J].
Chandra, S ;
Kumar, V .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 105 (03) :626-629
[4]   SYMMETRIC DUAL NONDIFFERENTIABLE PROGRAMS [J].
CHANDRA, S ;
HUSAIN, I .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 24 (02) :295-307
[5]   SYMMETRIC DUAL NONLINEAR PROGRAMS [J].
DANTZIG, GB ;
EISENBERG, E ;
COTTLE, RW .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) :809-+
[6]  
Dorn W. S., 1960, J. Oper. Res. Soc. Japan, V2, P93
[7]   Multiobjective symmetric duality with invexity [J].
Gulati, TR ;
Husain, I ;
Ahmed, A .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) :25-36
[8]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[9]  
Mond B., 1991, RECENT DEV MATH PROG, P137
[10]  
MOND B, 1984, MATH OPERATIONSFORSC, V15, P313