Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images

被引:23
|
作者
Islam, Md. Robiul [1 ]
Nahiduzzaman, Md. [1 ]
Goni, Md. Omaer Faruq [1 ]
Sayeed, Abu [2 ]
Anower, Md. Shamim [3 ]
Ahsan, Mominul [4 ]
Haider, Julfikar [5 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Elect & Comp Engn, Rajshahi 6204, Bangladesh
[2] Rajshahi Univ Engn & Technol, Dept Comp Sci & Engn, Rajshahi 6204, Bangladesh
[3] Rajshahi Univ Engn & Technol, Dept Elect & Elect Engn, Rajshahi 6204, Bangladesh
[4] Univ York, Dept Comp Sci, Deramore Lane, York YO10 5GH, N Yorkshire, England
[5] Manchester Metropolitan Univ, Dept Engn, John Dalton Bldg,Chester St, Manchester M1 5GD, Lancs, England
关键词
malaria parasite; image analysis; deep learning; transformer-based model; grad-cam visualization; CNN;
D O I
10.3390/s22124358
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Malaria is a life-threatening disease caused by female anopheles mosquito bites. Various plasmodium parasites spread in the victim's blood cells and keep their life in a critical situation. If not treated at the early stage, malaria can cause even death. Microscopy is a familiar process for diagnosing malaria, collecting the victim's blood samples, and counting the parasite and red blood cells. However, the microscopy process is time-consuming and can produce an erroneous result in some cases. With the recent success of machine learning and deep learning in medical diagnosis, it is quite possible to minimize diagnosis costs and improve overall detection accuracy compared with the traditional microscopy method. This paper proposes a multiheaded attention-based transformer model to diagnose the malaria parasite from blood cell images. To demonstrate the effectiveness of the proposed model, the gradient-weighted class activation map (Grad-CAM) technique was implemented to identify which parts of an image the proposed model paid much more attention to compared with the remaining parts by generating a heatmap image. The proposed model achieved a testing accuracy, precision, recall, f1-score, and AUC score of 96.41%, 96.99%, 95.88%, 96.44%, and 99.11%, respectively, for the original malaria parasite dataset and 99.25%, 99.08%, 99.42%, 99.25%, and 99.99%, respectively, for the modified dataset. Various hyperparameters were also finetuned to obtain optimum results, which were also compared with state-of-the-art (SOTA) methods for malaria parasite detection, and the proposed method outperformed the existing methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Dementia Detection using Transformer-Based Deep Learning and Natural Language Processing Models
    Saltz, Ploypaphat
    Lin, Shih Yin
    Cheng, Sunny Chieh
    Si, Dong
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 509 - 510
  • [42] Abusive Bangla comments detection on Facebook using transformer-based deep learning models
    Aurpa, Tanjim Taharat
    Sadik, Rifat
    Ahmed, Md Shoaib
    SOCIAL NETWORK ANALYSIS AND MINING, 2022, 12 (01)
  • [43] Malaria Detection from Blood Cell Images Using Convolutional Neural Network Model
    Tiwari, Harsha
    Dhole, Avinash
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 603 - 612
  • [44] Performance Analysis of Machine Learning and Deep Learning Architectures for Malaria Detection on Cell Images
    Narayanan, Barath Narayanan
    Ali, Redha
    Hardie, Russell C.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [45] DeePathNet: A Transformer-Based Deep Learning Model Integrating Multiomic Data with Cancer Pathways
    Cai, Zhaoxiang
    Poulos, Rebecca C.
    Aref, Adel
    Robinson, Phillip J.
    Reddel, Roger R.
    Zhong, Qing
    CANCER RESEARCH COMMUNICATIONS, 2024, 4 (12): : 3151 - 3164
  • [46] Deep Learning Based Classification of Malaria from Slide Images
    Kalkan, Soner Can
    Sahingoz, Ozgur Koray
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [47] Spectrum-Induced Transformer-Based Feature Learning for Multiple Change Detection in Hyperspectral Images
    Zhang, Wuxia
    Zhang, Yuhang
    Gao, Shiwen
    Lu, Xiaoqiang
    Tang, Yi
    Liu, Shihu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [48] Utilizing Image Analysis with Machine Learning and Deep Learning to Identify Malaria Parasites in Conventional Microscopic Blood Smear Images
    Kundu, Tamal Kumar
    Anguraj, Dinesh Kumar
    Bhattacharyya, Debnath
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 343 - 362
  • [49] A transformer-based deep learning framework to predict employee attrition
    Li, Wenhui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [50] Transformer-Based Deep Learning Method for the Prediction of Ventilator Pressure
    Fan, Ruizhe
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2022), 2022, : 25 - 28