Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images

被引:22
|
作者
Islam, Md. Robiul [1 ]
Nahiduzzaman, Md. [1 ]
Goni, Md. Omaer Faruq [1 ]
Sayeed, Abu [2 ]
Anower, Md. Shamim [3 ]
Ahsan, Mominul [4 ]
Haider, Julfikar [5 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Elect & Comp Engn, Rajshahi 6204, Bangladesh
[2] Rajshahi Univ Engn & Technol, Dept Comp Sci & Engn, Rajshahi 6204, Bangladesh
[3] Rajshahi Univ Engn & Technol, Dept Elect & Elect Engn, Rajshahi 6204, Bangladesh
[4] Univ York, Dept Comp Sci, Deramore Lane, York YO10 5GH, N Yorkshire, England
[5] Manchester Metropolitan Univ, Dept Engn, John Dalton Bldg,Chester St, Manchester M1 5GD, Lancs, England
关键词
malaria parasite; image analysis; deep learning; transformer-based model; grad-cam visualization; CNN;
D O I
10.3390/s22124358
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Malaria is a life-threatening disease caused by female anopheles mosquito bites. Various plasmodium parasites spread in the victim's blood cells and keep their life in a critical situation. If not treated at the early stage, malaria can cause even death. Microscopy is a familiar process for diagnosing malaria, collecting the victim's blood samples, and counting the parasite and red blood cells. However, the microscopy process is time-consuming and can produce an erroneous result in some cases. With the recent success of machine learning and deep learning in medical diagnosis, it is quite possible to minimize diagnosis costs and improve overall detection accuracy compared with the traditional microscopy method. This paper proposes a multiheaded attention-based transformer model to diagnose the malaria parasite from blood cell images. To demonstrate the effectiveness of the proposed model, the gradient-weighted class activation map (Grad-CAM) technique was implemented to identify which parts of an image the proposed model paid much more attention to compared with the remaining parts by generating a heatmap image. The proposed model achieved a testing accuracy, precision, recall, f1-score, and AUC score of 96.41%, 96.99%, 95.88%, 96.44%, and 99.11%, respectively, for the original malaria parasite dataset and 99.25%, 99.08%, 99.42%, 99.25%, and 99.99%, respectively, for the modified dataset. Various hyperparameters were also finetuned to obtain optimum results, which were also compared with state-of-the-art (SOTA) methods for malaria parasite detection, and the proposed method outperformed the existing methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Embedded System-Based Malaria Detection From Blood Smear Images Using Lightweight Deep Learning Model
    Salam, Abdus
    Hasan, S. M. Nahid
    Karim, Md. Jawadul
    Anower, Shamim
    Nahiduzzaman, Md
    Chowdhury, Muhammad E. H.
    Murugappan, M.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [2] Automatic identification of suicide notes with a transformer-based deep learning model
    Zhang, Tianlin
    Schoene, Annika M.
    Ananiadou, Sophia
    INTERNET INTERVENTIONS-THE APPLICATION OF INFORMATION TECHNOLOGY IN MENTAL AND BEHAVIOURAL HEALTH, 2021, 25
  • [3] A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection
    Delgado-Ortet, Maria
    Molina, Angel
    Alferez, Santiago
    Rodellar, Jose
    Merino, Anna
    ENTROPY, 2020, 22 (06) : 1 - 16
  • [4] Transformer-based deep learning model for forced oscillation localization
    Matar, Mustafa
    Estevez, Pablo Gill
    Marchi, Pablo
    Messina, Francisco
    Elmoudi, Ramadan
    Wshah, Safwan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 146
  • [5] GIT: A Transformer-Based Deep Learning Model for Geoacoustic Inversion
    Feng, Sheng
    Zhu, Xiaoqian
    Ma, Shuqing
    Lan, Qiang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (06)
  • [6] Transformer-based knowledge distillation for explainable intrusion detection system
    AL-Nomasy, Nadiah
    Alamri, Abdulelah
    Aljuhani, Ahamed
    Kumar, Prabhat
    COMPUTERS & SECURITY, 2025, 154
  • [7] Multidomain transformer-based deep learning for early detection of network intrusion
    Liu, Jinxin
    Simsek, Murat
    Nogueira, Michele
    Kantarci, Burak
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6056 - 6061
  • [8] Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application
    Fuhad, K. M. Faizullah
    Tuba, Jannat Ferdousey
    Sarker, Md Rabiul Ali
    Momen, Sifat
    Mohammed, Nabeel
    Rahman, Tanzilur
    DIAGNOSTICS, 2020, 10 (05)
  • [9] An explainable and accurate transformer-based deep learning model for wheeze classification utilizing real-world pediatric data
    Kim, Beom Joon
    Mun, Jeong Hyeon
    Hwang, Dae Hwan
    Suh, Dong In
    Lim, Changwon
    Kim, Kyunghoon
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] Pilot Stress Detection Through Physiological Signals Using a Transformer-Based Deep Learning Model
    Li, Yuhan
    Li, Ke
    Chen, Jiaao
    Wang, Shaofan
    Lu, Haochang
    Wen, Dongsheng
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11774 - 11784