High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon*

被引:10
作者
Xu, Yancai [1 ]
Zhou, Rong [1 ]
Yin, Qin [1 ]
Li, Jiao [1 ]
Si, Guoxiang [1 ]
Zhang, Hongbin [1 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
rubrene; van der Waals heterojunction; photodetector; band alignment; CRYSTALLINE RUBRENE; SI-H;
D O I
10.1088/1674-1056/abf345
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Organic/inorganic hybrid van der Waals heterostructure with an atomically abrupt interface has attracted great research interests within the field of multifunctional electronic and optoelectronic devices. The integration of organic rubrene films with inorganic Si semiconductors can avoid the atomic mutual-diffusion at the interface, and provide the possibility of forming two-dimensional van der Waals heterojunction accompanied with the type-II energy band alignment, due to the transfer behaviors of majority carriers at the interface. In this study, the high-quality rubrene/Si van der Waals heterostructure with an electronically abrupt junction was prepared, and a self-powered photodetector was then constructed based on this hybrid heterojunction. The photodetector demonstrated an excellent switching response to the 1064 nm monochromatic light with large on/off current ratio of 7.0 x 10(3), the maximum photocurrent of 14.62 mA, the maximum responsivity of 2.07 A/W, the maximum detectivity of 2.9 x 10(11) Jones, and a fast response time of 13.0 mu s. This study offers important guidance for preparing high-quality rubrene/Si hybrid van der Waals heterostructure with desirable band alignment, and the designed heterojunction photodetector has an important application prospect in the field of multifunctional optoelectronics.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers [J].
Bellus, Matthew Z. ;
Li, Ming ;
Lane, Samuel D. ;
Ceballos, Frank ;
Cui, Qiannan ;
Zeng, Xiao Cheng ;
Zhao, Hui .
NANOSCALE HORIZONS, 2017, 2 (01) :31-36
[2]   Plasmon Thin Film Transistor Using Plasma Polymerized Aniline-Rubrene-Gold Nanocomposite in One-Step Process [J].
Biswasi, Sweety ;
Pal, Arup R. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2020, 40 (01) :371-386
[3]   Organic semiconductors for biological sensing [J].
Borges-Gonzalez, Jorge ;
Kousseff, Christina J. ;
Nielsen, Christian B. .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (05) :1111-1130
[4]   Charge injection, transport and localization in rubrene [J].
Burke, Franklyn ;
Stamenov, Plamen ;
Coey, J. M. D. .
SYNTHETIC METALS, 2011, 161 (7-8) :563-569
[5]   Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches [J].
Cho, Eun Hei ;
Song, Won Geun ;
Park, Cheol Joon ;
Kim, Jeongyong ;
Kim, Sunkook ;
Joo, Jinsoo .
NANO RESEARCH, 2015, 8 (03) :790-800
[6]  
Chowdhury AM., 2019, ACS APPL MATER INTER, V11, DOI [10.1021/acsami.9b09262, DOI 10.1021/ACSAMI.9B09262]
[7]   A 2-D π-π dimer model system to investigate structure-charge transfer relationships in rubrene [J].
Chung, Sherlyn J. ;
McHugh, Callum J. ;
Calvo-Castro, Jesus .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (07) :2029-2036
[8]   Morphology and crystallographic properties of rubrene thin films grown on rnuscovite(001) [J].
Djuric, T. ;
Thierry, A. ;
Grogger, W. ;
Abd Al-Baqi, Sh. M. ;
Sitter, H. ;
Resel, R. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (09) :1718-1722
[9]   Toward facile broadband photodetectors based on self-assembled ZnO nanobridge/rubrene heterointerface [J].
Du, Qianqian ;
Qin, Shuchao ;
Wang, Wenjun ;
Guo, Yangyang ;
Ye, Jiandong ;
Zhu, Shunming ;
Tang, Kun ;
Zhang, Rong ;
Zheng, Youdou ;
Gu, Shulin .
NANOTECHNOLOGY, 2019, 30 (06)
[10]   Interfaces in organic electronics [J].
Fahlman, Mats ;
Fabiano, Simone ;
Gueskine, Viktor ;
Simon, Daniel ;
Berggren, Magnus ;
Crispin, Xavier .
NATURE REVIEWS MATERIALS, 2019, 4 (10) :627-650