A fast Fourier-Galerkin method for solving singular boundary integral equations

被引:31
|
作者
Cai, Haotao [2 ,3 ]
Xu, Yuesheng [1 ,2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Shandong Univ, Dept Math & Stat, Jinan 250002, Peoples R China
关键词
singular boundary integral equations; Fourier-Galerkin methods; fast solutions;
D O I
10.1137/070703478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose in this paper a convenient way to compress the dense matrix representation of a compact integral operator with a smooth kernel under the Fourier basis. The compression leads to a sparse matrix with only O(n log n) nonzero entries, where 2n or 2n + 1 denotes the order of the matrix. Based on this compression strategy, we develop a fast Fourier-Galerkin method for solving a class of singular boundary integral equations. We prove that the fast Fourier-Galerkin method gives the optimal convergence order O( n(-t)), where t denotes the degree of regularity of the exact solution. Moreover, we design a fast scheme for solving the corresponding truncated linear system. We show that solving this system requires only an O( n log(2) n) number of multiplications. We present numerical examples to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed algorithm.
引用
收藏
页码:1965 / 1984
页数:20
相关论文
共 50 条
  • [41] A GALERKIN ALGORITHM FOR SOLVING CAUCHY-TYPE SINGULAR INTEGRAL-EQUATIONS
    ABDELAL, LF
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (06): : 699 - 709
  • [42] A new constructive method for solving singular integral equations
    Aliev, R. A.
    MATHEMATICAL NOTES, 2006, 79 (5-6) : 749 - 770
  • [43] Line element method of solving singular integral equations
    Samanta, Anushree
    Chakraborty, Rumpa
    Banerjea, Sudeshna
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 528 - 541
  • [44] A SIMPLE METHOD OF SOLVING SINGULAR INTEGRAL EQUATIONS NUMERICALLY
    ROBINSON, AH
    FERZIGER, JH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1969, 12 (01): : 142 - &
  • [45] A new constructive method for solving singular integral equations
    R. A. Aliev
    Mathematical Notes, 2006, 79 : 749 - 770
  • [46] Line element method of solving singular integral equations
    Anushree Samanta
    Rumpa Chakraborty
    Sudeshna Banerjea
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 528 - 541
  • [47] Solving singular integral equations
    de Klerk, JH
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1998, : 137 - 144
  • [48] FAST SPECTRAL GALERKIN METHOD FOR LOGARITHMIC SINGULAR EQUATIONS ON A SEGMENT
    Jerez-Hanckes, Carlos
    Nicaise, Serge
    Urzua-Torres, Carolina
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (01) : 128 - 158
  • [49] Error analysis of a Fourier-Galerkin method applied to the Schrodinger equation
    Munoz Grajales, Juan Carlos
    Fernanda Vargas, Luisa
    APPLICABLE ANALYSIS, 2016, 95 (01) : 156 - 173
  • [50] Solving singular convolution equations using the inverse Fast Fourier Transform
    Eduard Krajník
    Vincente Montesinos
    Peter Zizler
    Václav Zizler
    Applications of Mathematics, 2012, 57 : 543 - 550