Smoothing the payoff for efficient computation of Basket option prices

被引:17
作者
Bayer, Christian [1 ]
Siebenmorgen, Markus [2 ]
Tempone, Raul [3 ]
机构
[1] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[2] Univ Bonn, Inst Numer Simulat, Wegelerstr 6, D-53115 Bonn, Germany
[3] King Abdullah Univ Sci & Technol KAUST, CEMSE, Thuwal 239556900, Saudi Arabia
关键词
Computational Finance; European option pricing; Multivariate approximation and integration; Sparse grids; Stochastic Collocation methods; Monte Carlo and Quasi Monte Carlo methods; QUASI-MONTE CARLO; SPARSE GRIDS; INTEGRATION; APPROXIMATION; MODEL;
D O I
10.1080/14697688.2017.1308003
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider the problem of pricing basket options in a multivariate Black-Scholes or Variance-Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high-dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse-grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster than Monte Carlo or Quasi Monte Carlo methods in dimensions up to 35.
引用
收藏
页码:491 / 505
页数:15
相关论文
共 34 条
[1]  
Achtsis N., 2013, CONDITIONAL SAMPLING, P253
[2]   Conditional Sampling for Barrier Option Pricing under the LT Method [J].
Achtsis, Nico ;
Cools, Ronald ;
Nuyens, Dirk .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2013, 4 (01) :327-352
[3]  
Alt: W., 2002, Nichtlineare Optimierung - Eine Einfuhrung in Theorie, Verfahren und Anwendungen
[4]  
[Anonymous], 1992, SIAM, DOI DOI 10.1137/1.9781611970081.FM
[5]  
[Anonymous], 1964, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[6]  
[Anonymous], 1963, Dokl. Akad. Nauk SSSR
[7]  
[Anonymous], 1999, Stoch. Process. Their Appl, DOI DOI 10.1007/S007800050068
[8]  
Bayer C, 2015, SPRINGER P MATH STAT, V110, P449, DOI 10.1007/978-3-319-11605-1_16
[9]  
Bayer C, 2015, SPRINGER P MATH STAT, V110, P213, DOI 10.1007/978-3-319-11605-1_7
[10]   Asymptotics Beats Monte Carlo: The Case of Correlated Local Vol Baskets [J].
Bayer, Christian ;
Laurence, Peter .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (10) :1618-1657