Graphene-Graphite Oxide Field-Effect Transistors

被引:76
作者
Standley, Brian [2 ]
Mendez, Anthony [1 ]
Schmidgall, Emma [3 ]
Bockrath, Marc [1 ]
机构
[1] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[2] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[3] Technion Israel Inst Technol, Inst Solid State, Dept Phys, IL-32000 Haifa, Israel
基金
美国国家科学基金会;
关键词
graphene; graphite oxide; eld-effect transistor; layered dielectric; ATOMIC-FORCE MICROSCOPE; CONDUCTANCE MICROSCOPY; SILICON DIOXIDE; INTERFERENCE; DIELECTRICS; TRANSPORT; DEVICES; CHARGE; FILMS; SIO2;
D O I
10.1021/nl2028415
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO2 or HfO2. In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite was found to be comparable to SiO2, typically similar to 1-3 x 10(8) V/m, while its dielectric constant is slightly higher, kappa approximate to 4.3.
引用
收藏
页码:1165 / 1169
页数:5
相关论文
共 50 条
[1]   Supramolecular Chemistry on Graphene Field-Effect Transistors [J].
Zhang, Xiaoyan ;
Huisman, Everardus H. ;
Gurram, Mallikarjuna ;
Browne, Wesley R. ;
van Wees, Bart J. ;
Feringa, Ben L. .
SMALL, 2014, 10 (09) :1735-1740
[2]   Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors [J].
Li, Hong ;
Zhang, Qing ;
Liu, Chao ;
Xu, Shouheng ;
Gao, Pingqi .
ACS NANO, 2011, 5 (04) :3198-3203
[3]   Graphene field-effect transistors [J].
Reddy, Dharmendar ;
Register, Leonard F. ;
Carpenter, Gary D. ;
Banerjee, Sanjay K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (31)
[4]   The effect of traps on the performance of graphene field-effect transistors [J].
Zhu, J. ;
Jhaveri, R. ;
Woo, J. C. S. .
APPLIED PHYSICS LETTERS, 2010, 96 (19)
[5]   Investigation on MetalOxide Graphene Field-Effect Transistors With Clamped Geometries [J].
Giambra, Marco A. ;
Benz, Christian ;
Wu, Fan ;
Thuermer, Maximillian ;
Balachandran, Geethu ;
Benfante, Antonio ;
Pernice, Riccardo ;
Pandey, Himadri ;
Boopathi, Muraleetharan ;
Jang, Min-Ho ;
Ahn, Jong-Hyun ;
Stivala, Salvatore ;
Calandra, Enrico ;
Arnone, Claudio ;
Cusumano, Pasquale ;
Busacca, Alessandro ;
Pernice, Wolfram H. P. ;
Danneau, Romain .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) :964-968
[6]   Encapsulated graphene field-effect transistors for air stable operation [J].
Alexandrou, Konstantinos ;
Petrone, Nicholas ;
Hone, James ;
Kymissis, Ioannis .
APPLIED PHYSICS LETTERS, 2015, 106 (11)
[7]   Interfacial control for uniformly depositing oxide dielectrics in top-gate graphene field-effect transistors [J].
Kim, Dong Yeong ;
Rho, Hokyun ;
Lee, Eunyoung ;
Kim, Junwoo ;
Bae, Sukang ;
Kim, Tae-Wook ;
Lee, Sang Hyun .
CARBON LETTERS, 2025,
[8]   Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors [J].
Ahlberg, Patrik ;
Hinnemo, Malkolm ;
Zhang, Shi-Li ;
Olsson, Jorgen .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (03) :1757-1761
[9]   Deoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors [J].
Hwang, Jongseung ;
Kim, Heetae ;
Lee, Jaehyun ;
Whang, Dongmok ;
Hwang, Sungwoo .
IEICE TRANSACTIONS ON ELECTRONICS, 2011, E94C (05) :826-829
[10]   A review for compact model of graphene field-effect transistors [J].
Lu, Nianduan ;
Wang, Lingfei ;
Li, Ling ;
Liu, Ming .
CHINESE PHYSICS B, 2017, 26 (03)