Optimal Bicubic Finite Volume Methods on Quadrilateral Meshes

被引:5
作者
Chen, Yanli [1 ]
Li, Yonghai [2 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite volume method; bicubic element; quadrilateral meshes; ELEMENT METHOD; COVOLUME; SUPERCONVERGENCE; CONVERGENCE; SCHEMES;
D O I
10.4208/aamm.2013.m401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an optimal bicubic finite volume method is established and analyzed for elliptic equations on quadrilateral meshes. Base on the so-called element wise stiffness matrix analysis technique, we proceed the stability analysis. It is proved that the new scheme has optimal O(h(3)) convergence rate in H-1 norm. Additionally, we apply this analysis technique to bilinear finite volume method. Finally, numerical examples are provided to confirm the theoretical analysis of bicubic finite volume method.
引用
收藏
页码:454 / 471
页数:18
相关论文
共 35 条
  • [31] A second-order finite volume element method on quadrilateral meshes for elliptic equations
    Yang, Min
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (06): : 1053 - 1067
  • [32] Error estimation of a quadratic finite volume method on right quadrangular prism grids
    Yang, Min
    Liu, Jiangguo
    Chen, Chuanjun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 274 - 282
  • [33] Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems
    Zhang, Zhimin
    Zou, Qingsong
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 363 - 393
  • [34] A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes
    Zhang, Zhimin
    Zou, Qingsong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) : 308 - 330
  • [35] Zhu P., 1982, NUMERICAL MATH J CHI, V4, P360