Specializations of Ferrers ideals

被引:24
作者
Corso, Alberto [1 ]
Nagel, Uwe [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Ferrers graphs; threshold graphs; monomial (edge) ideals; cellular minimal free resolution;
D O I
10.1007/s10801-007-0111-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a specialization technique in order to study monomial ideals that are generated in degree two by using our earlier results about Ferrers ideals. It allows us to describe explicitly a cellular minimal free resolution of various ideals including any strongly stable and any squarefree strongly stable ideal whose minimal generators have degree two. In particular, this shows that threshold graphs can be obtained as specializations of Ferrers graphs, which explains their similar properties.
引用
收藏
页码:425 / 437
页数:13
相关论文
共 12 条
[1]   Squarefree lexsegment ideals [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (02) :353-378
[2]  
Bayer D, 1998, J REINE ANGEW MATH, V502, P123
[3]  
Bayer D, 1998, MATH RES LETT, V5, P31
[4]  
CORSO A, 2007, T AM MATH S IN PRESS
[5]   Small schemes and varieties of minimal degree [J].
Eisenbud, D. ;
Green, M. ;
Hulek, K. ;
Popescu, S. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (06) :1363-1389
[6]   MINIMAL RESOLUTIONS OF SOME MONOMIAL IDEALS [J].
ELIAHOU, S ;
KERVAIRE, M .
JOURNAL OF ALGEBRA, 1990, 129 (01) :1-25
[7]   Linear resolutions of quadratic monomial ideals [J].
Horwitz, Noam .
JOURNAL OF ALGEBRA, 2007, 318 (02) :981-1001
[8]  
KLIVANS C, 2007, ELECT J COM IN PRESS
[9]  
Mahadev N.V.R., 1995, Threshold graphs and related topics, volume 56 of Annals of Discrete Mathematics, V56
[10]   Lifting monomial ideals [J].
Migliore, J ;
Nagel, U .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) :5679-5701