Topology of mixed hypersurfaces of cyclic type

被引:8
作者
Inaba, Kazumasa [1 ]
Kawashima, Masayuki [2 ]
Oka, Mutsuo [3 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Okayama Univ Sci, Dept Informat Sci, Kita Ku, 1-1 Ridai Cho, Okayama 7000005, Japan
[3] Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
基金
日本学术振兴会;
关键词
polar weighted homogeneous; Milnor fibration;
D O I
10.2969/jmsj/07017538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(II)(z, (z) over bar) = z(1)(a1+b1)(z) over bar (-b1)(1)z(2) + ... + z(n-1)(an-1+bn-1)(z) over bar (bn-1)(n-1)z(n) + z(n)(an+bn)(z) over bar (-bn-)(n)z(1) be a mixed weighted homogeneous polynomial of cyclic type and g(II)(z) = z(1)(a1)z(2) + ... + z(n-1)(an-1)z(n) + z(n)(an)z(1) be the associated weighted homogeneous polynomial where a(j) >= 1 and b(j) >= 0 for j = 1,,n. We show that two links S-epsilon(2n-1) boolean AND f(II)(-1)(0) and S-epsilon(2n-1) boolean AND g(II)(-1)(0) are diffeomorphic and their Milnor fibrations are isomorphic.
引用
收藏
页码:387 / 402
页数:16
相关论文
共 9 条
[1]  
Cisneros-Molina JL, 2008, CONTEMP MATH, V475, P43
[2]   Topology of polar weighted homogeneous hypersurfaces [J].
Oka, Mutsuo .
KODAI MATHEMATICAL JOURNAL, 2008, 31 (02) :163-182
[3]  
Oka M, 2011, CONTEMP MATH, V538, P389
[4]   NON-DEGENERATE MIXED FUNCTIONS [J].
Oka, Mutsuo .
KODAI MATHEMATICAL JOURNAL, 2010, 33 (01) :1-62
[5]   ISOLATED SINGULARITIES OF ALGEBRAIC SURFACES WITH C ACTION [J].
ORLIK, P ;
WAGREICH, P .
ANNALS OF MATHEMATICS, 1971, 93 (02) :205-&
[6]  
Ruas MAS, 2002, TRENDS MATH, P191
[7]  
Seade J., 2005, PROGR MATH, V241
[8]  
Seade J., 1996, Bol. Soc. Brasil. Mat. (N.S.), V27, P199, DOI [10.1007/BF01259360, DOI 10.1007/BF01259360]
[9]  
Wolf JA., 1964, Michigan Math. J, V11, P65, DOI [10.1307/mmj/1028999036, DOI 10.1307/MMJ/1028999036]