A METHOD INTEGRATING GF-1 MULTI-SPECTRAL AND MODIS MULTI-TEMPORAL NDVI DATA FOR FOREST LAND COVER CLASSIFICATION
被引:1
作者:
Li, Zengyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R ChinaChinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R China
Li, Zengyuan
[1
]
Li, Xiaohong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R ChinaChinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R China
Li, Xiaohong
[1
]
Chen, Erxue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R ChinaChinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R China
Chen, Erxue
[1
]
Li, Shiming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R ChinaChinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R China
Li, Shiming
[1
]
机构:
[1] Chinese Acad Forestry, Inst Forest Resources Informat Tech, Beijing, Peoples R China
来源:
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)
|
2016年
关键词:
GF-1;
image;
MODIS NDVI data;
Random Forest;
phenological features;
forest land cover classification;
IMAGE;
D O I:
10.1109/IGARSS.2016.7729970
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In this paper a method was demonstrated that GF-1 multi-spectral and MODIS multi-temporal NDVI data were integrated for forest land cover classification. The test site is located in the central of the Xiaoxing'anling region in Heilongjiang province where covered the area of one scene of GF-1 image. The random forests algorithm was adopted to select the best features automatically which contains spectral, texture and shape features from GF-1 multi-spectral data and phenological features from multi-temporal MODIS NDVI data. A decision tree was used to supervise the classification result. Experimental results show that the overall classification accuracy and Kappa coefficient of the developed method combing multi-sources data can reach 89.46% and 0.874 respectively, with significant improvement compared with that using either GF-1 multi-spectral data or MODIS NDVI time series data alone, especially for the classification of evergreen forest.
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Jia, Kun
Liang, Shunlin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USABeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Liang, Shunlin
Zhang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Zhang, Lei
Wei, Xiangqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Wei, Xiangqin
Yao, Yunjun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Yao, Yunjun
Xie, Xianhong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Xie, Xianhong
[J].
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,
2014,
33
: 32
-
38
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Jia, Kun
Liang, Shunlin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USABeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Liang, Shunlin
Zhang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Zhang, Lei
Wei, Xiangqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Wei, Xiangqin
Yao, Yunjun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Yao, Yunjun
Xie, Xianhong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Xie, Xianhong
[J].
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,
2014,
33
: 32
-
38