Application of carbon nanotubes to silicon nitride matrix reinforcements

被引:47
作者
Balázsi, C
Wéber, F
Kövér, Z
Shen, Z
Kónya, Z
Kasztovszky, Z
Vértesy, Z
Biró, LP
Kiricsi, I
Arató, P
机构
[1] Res Inst Tech Phys & Mat Sci, Ceram & Composites Lab, H-1121 Budapest, Hungary
[2] Stockholm Univ, Arrhenius Lab, Dept Inorgan Chem, SE-10691 Stockholm, Sweden
[3] Univ Szeged, Dept Appl & Environm Chem, H-6720 Szeged, Hungary
[4] Inst Isotope & Surface Chem, Dept Nucl Res, Chem Res Ctr, H-1525 Budapest, Hungary
[5] Res Inst Tech Phys & Mat Sci, Nanotechnol Dept, H-1121 Budapest, Hungary
关键词
carbon nanotube; silicon nitride; composites; sintering;
D O I
10.1016/j.cap.2005.07.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A conventional (hot isostatic pressing) and a novel sintering method (spark plasma sintering) have been applied to perform multiwall carbon nanotube (MWNT) reinforced silicon nitride composites. Morphological, structural, compositional investigations, as well as mechanical characterization have been performed. The first results Show that carbon nanotubes have been preserved in composite structure during these two high-temperature processes. Carbon nanotubes have been found to have good adherence to the silicon nitride grains as observed for both processing methods. Moreover, carbon nanotubes may serve as crystallization sites and seeds for silicon nitride grain growth. Significant differences have been found between composites prepared by these two sintering techniques. Well-densified composites with nanocrystalline structure and with improved mechanical characteristics have been obtained by spark plasma sintering. The conventional sintering resulted in partially densified composites with coarser grain structure. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 20 条
  • [1] MECHANICAL-PROPERTIES IN THE INITIAL-STAGE OF SINTERING
    ARATO, P
    BESENYEI, E
    KELE, A
    WEBER, F
    [J]. JOURNAL OF MATERIALS SCIENCE, 1995, 30 (07) : 1863 - 1871
  • [2] Preparation and characterization of carbon nanotube reinforced silicon nitride composites
    Balázsi, C
    Kónya, Z
    Wéber, F
    Biró, LP
    Arató, P
    [J]. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (6-8): : 1133 - 1137
  • [3] BALAZSI C, 2004, 5 INT C HIGH TEMP CE, P107
  • [4] Continuous carbon nanotube production in underwater AC electric arc
    Biró, LP
    Horváth, ZE
    Szalmás, L
    Kertész, K
    Wéber, F
    Juhász, G
    Radnóczi, G
    Gyulai, J
    [J]. CHEMICAL PHYSICS LETTERS, 2003, 372 (3-4) : 399 - 402
  • [5] Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area
    Cadek, M
    Coleman, JN
    Ryan, KP
    Nicolosi, V
    Bister, G
    Fonseca, A
    Nagy, JB
    Szostak, K
    Béguin, F
    Blau, WJ
    [J]. NANO LETTERS, 2004, 4 (02) : 353 - 356
  • [6] CAJ Y, 2002, PHYS STATUS SOLIDI A, V193, pR13
  • [7] Dobedoe R.S., 2003, B EUR CERAM SOC, V1, P19
  • [8] Carbon nanotube-metal-oxide nanocomposites:: Microstructure, electrical conductivity and mechanical properties
    Flahaut, E
    Peigney, A
    Laurent, C
    Marlière, C
    Chastel, F
    Rousset, A
    [J]. ACTA MATERIALIA, 2000, 48 (14) : 3803 - 3812
  • [9] Groza JR, 2003, REV ADV MATER SCI, V5, P24
  • [10] Sintering activation by external electrical field
    Groza, JR
    Zavaliangos, A
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 287 (02): : 171 - 177