Holey Substrate-Directed Strain Patterning in Bilayer MoS2

被引:10
作者
Zhang, Yichao [1 ]
Choi, Moon-Ki [2 ]
Haugstad, Greg [3 ]
Tadmor, Ellad B. [2 ]
Flannigan, David J. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Characterizat Facil, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
suspended monolayers; 2D materials; TMD; TEM; AFM; atomistic simulations; ELECTRICAL-PROPERTIES; ELASTIC PROPERTIES; LAYER MOS2; MONOLAYER; GRAPHENE; PHOTOLUMINESCENCE; DYNAMICS;
D O I
10.1021/acsnano.1c08348
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scattering studies of precisely aligned, substrate-free strained regions in transmission mode.
引用
收藏
页码:20253 / 20260
页数:8
相关论文
共 42 条
[1]   Strain-engineered growth of two-dimensional materials [J].
Ahn, Geun Ho ;
Amani, Matin ;
Rasool, Haider ;
Lien, Der-Hsien ;
Mastandrea, James P. ;
Ager, Joel W., III ;
Dubey, Madan ;
Chrzan, Daryl C. ;
Minor, Andrew M. ;
Javey, Ali .
NATURE COMMUNICATIONS, 2017, 8
[2]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[3]   Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor [J].
Branny, Artur ;
Kumar, Santosh ;
Proux, Raphael ;
Gerardot, Brian D. .
NATURE COMMUNICATIONS, 2017, 8
[4]   DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts [J].
Byskov, LS ;
Norskov, JK ;
Clausen, BS ;
Topsoe, H .
JOURNAL OF CATALYSIS, 1999, 187 (01) :109-122
[5]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[6]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[7]   Femtosecond electron imaging of defect-modulated phonon dynamics [J].
Cremons, Daniel R. ;
Plemmons, Dayne A. ;
Flannigan, David J. .
NATURE COMMUNICATIONS, 2016, 7
[8]   Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides [J].
Dadgar, A. M. ;
Scullion, D. ;
Kang, K. ;
Esposito, D. ;
Yang, E. H. ;
Herman, I. P. ;
Pimenta, M. A. ;
Santos, E. J. G. ;
Pasupathy, A. N. .
CHEMISTRY OF MATERIALS, 2018, 30 (15) :5148-5155
[9]  
De Graef M., 2003, INTRO CONVENTIONAL T
[10]  
Friedel G, 1913, CR HEBD ACAD SCI, V157, P1533