Computed Tomography Texture Analysis for Predicting Clinical Outcomes in Patients With Metastatic Renal Cell Carcinoma Treated With Immune Checkpoint Inhibitors

被引:5
作者
Park, Hyo Jung [1 ,2 ]
Qin, Lei [3 ,4 ]
Bakouny, Ziad [5 ]
Krajewski, Katherine M. [3 ,4 ]
Van Allen, Eliezer M. [5 ]
Choueiri, Toni K. [5 ]
Shinagare, Atul B. [3 ,4 ]
机构
[1] Univ Ulsan, Asan Med Ctr, Dept Radiol, Coll Med, Seoul, South Korea
[2] Univ Ulsan, Asan Med Ctr, Res Inst Radiol, Coll Med, Seoul, South Korea
[3] Harvard Med Sch, Dana Farber Canc Inst, Dept Imaging, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
关键词
metastatic renal cell carcinoma; immune checkpoint inhibitors; computed tomography; texture analysis; survival; CT TEXTURE; REGULARIZATION PATHS; MODEL; HETEROGENEITY; NIVOLUMAB; THERAPY; TUMORS; TOOL;
D O I
10.1093/oncolo/oyac034
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The treatment responses of immune checkpoint inhibitors in metastatic renal cell carcinoma (mRCC) vary, requiring reliable prognostic biomarkers. We assessed the prognostic ability of computed tomography (CT) texture analysis in patients with mRCC treated with programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors. Materials and Methods Sixty-eight patients with mRCC treated with PD-1/PD-L1 inhibitors between 2012 and 2019 were revaluated. Using baseline and first follow-up CT, baseline and follow-up texture models were developed to predict overall survival (OS) and progression-free survival (PFS) using least absolute shrinkage and selection operator Cox-proportional hazards analysis. Patients were divided into high-risk or low-risk group, and the survival difference was assessed using Kaplan-Meier and log-rank test. Multivariable Cox models were constructed by including only the clinical variables (clinical models) and by combining the clinical variables and the texture models (combined clinical-texture models), and their predictive performance was evaluated using Harrell's C-index. Results The baseline texture models distinguished longer- and shorter-term survivors for both OS (median, 60.1 vs. 17.0 months; P = .048) and PFS (5.2 vs. 2.8 months; P = .003). The follow-up texture models distinguished longer- and shorter-term overall survivors (40.3 vs. 15.2 months; P = .008) but not for PFS (5.0 vs. 3.6 months; P = .25). The combined clinical-texture model outperformed the clinical model in both predicting the OS (C-index, 0.70 vs. 0.63; P = .03) and PFS (C-index, 0.63 vs. 0.55; P = .04). Conclusion CT texture analysis performed at baseline and early after starting PD-1/PD-L1 inhibitors is associated with clinical outcomes of patients with mRCC.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 57 条
  • [1] Prognostic Value of Computed Tomography Texture Features in Non-Small Cell Lung Cancers Treated With Definitive Concomitant Chemoradiotherapy
    Ahn, Su Yeon
    Park, Chang Min
    Park, Sang Joon
    Kim, Hak Jae
    Song, Changhoon
    Lee, Sang Min
    McAdams, Holman Page
    Goo, Jin Mo
    [J]. INVESTIGATIVE RADIOLOGY, 2015, 50 (10) : 719 - 725
  • [2] Predictive Role of Computed Tomography Texture Analysis in Patients with Metastatic Urothelial Cancer Treated with Programmed Death-1 and Programmed Death-ligand 1 Inhibitors
    Alessandrino, Francesco
    Gujrathi, Rahul
    Nassar, Amin H.
    Alzaghal, Arwa
    Ravi, Arvind
    McGregor, Bradley
    Sonpavde, Guru
    Shinagare, Atul B.
    [J]. EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (05): : 680 - 686
  • [3] Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma
    Bakouny, Ziad
    Braun, David A.
    Shukla, Sachet A.
    Pan, Wenting
    Gao, Xin
    Hou, Yue
    Flaifel, Abdallah
    Tang, Stephen
    Bosma-Moody, Alice
    He, Meng Xiao
    Vokes, Natalie
    Nyman, Jackson
    Xie, Wanling
    Nassar, Amin H.
    Abou Alaiwi, Sarah
    Flippot, Ronan
    Bouchard, Gabrielle
    Steinharter, John A.
    Nuzzo, Pier Vitale
    Ficial, Miriam
    Sant'Angelo, Miriam
    Forman, Juliet
    Berchuck, Jacob E.
    Dudani, Shaan
    Bi, Kevin
    Park, Jihye
    Camp, Sabrina
    Sticco-Ivins, Maura
    Hirsch, Laure
    Baca, Sylvan C.
    Wind-Rotolo, Megan
    Ross-Macdonald, Petra
    Sun, Maxine
    Lee, Gwo-Shu Mary
    Chang, Steven L.
    Wei, Xiao X.
    McGregor, Bradley A.
    Harshman, Lauren C.
    Genovese, Giannicola
    Ellis, Leigh
    Pomerantz, Mark
    Hirsch, Michelle S.
    Freedman, Matthew L.
    Atkins, Michael B.
    Wu, Catherine J.
    Ho, Thai H.
    Linehan, W. Marston
    McDermott, David F.
    Heng, Daniel Y. C.
    Viswanathan, Srinivas R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma
    Braun, David A.
    Hou, Yue
    Bakouny, Ziad
    Ficial, Miriam
    Sant' Angelo, Miriam
    Forman, Juliet
    Ross-Macdonald, Petra
    Berger, Ashton C.
    Jegede, Opeyemi A.
    Elagina, Liudmilla
    Steinharter, John
    Sun, Maxine
    Wind-Rotolo, Megan
    Pignon, Jean-Christophe
    Cherniack, Andrew D.
    Lichtenstein, Lee
    Neuberg, Donna
    Catalano, Paul
    Freeman, Gordon J.
    Sharpe, Arlene H.
    McDermott, David F.
    Van Allen, Eliezer M.
    Signoretti, Sabina
    Wu, Catherine J.
    Shukla, Sachet A.
    Choueiri, Toni K.
    [J]. NATURE MEDICINE, 2020, 26 (06) : 909 - +
  • [5] Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma
    Braun, David A.
    Ishii, Yuko
    Walsh, Alice M.
    Van Allen, Eliezer M.
    Wu, Catherine J.
    Shukla, Sachet A.
    Choueiri, Toni K.
    [J]. JAMA ONCOLOGY, 2019, 5 (11) : 1631 - 1633
  • [6] Buhrmester V., 2019, ARXIV191112116V1CSAI
  • [7] Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma
    Choueiri, T. K.
    Powles, T.
    Burotto, M.
    Escudier, B.
    Bourlon, M. T.
    Zurawski, B.
    Juarez, V. M. Oyervides
    Hsieh, J. J.
    Basso, U.
    Shah, A. Y.
    Suarez, C.
    Hamzaj, A.
    Goh, J. C.
    Barrios, C.
    Richardet, M.
    Porta, C.
    Kowalyszyn, R.
    Feregrino, J. P.
    Zolnierek, J.
    Pook, D.
    Kessler, E. R.
    Tomita, Y.
    Mizuno, R.
    Bedke, J.
    Zhang, J.
    Maurer, M. A.
    Simsek, B.
    Ejzykowicz, F.
    Schwab, G. M.
    Apolo, A. B.
    Motzer, R. J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (09) : 829 - 841
  • [8] Targeting the HIF2-VEGF axis in renal cell carcinoma
    Choueiri, Toni K.
    Kaelin, William G., Jr.
    [J]. NATURE MEDICINE, 2020, 26 (10) : 1519 - 1530
  • [9] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
  • [10] Assessing calibration of prognostic risk scores
    Crowson, Cynthia S.
    Atkinson, Elizabeth J.
    Therneau, Terry M.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1692 - 1706