Optogenetics in bacteria - applications and opportunities

被引:41
作者
Lindner, Florian [1 ]
Diepold, Andreas [1 ,2 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Ecophysiol, Karl Von Frisch Str 10, D-35043 Marburg, Germany
[2] SYNMIKRO, LOEWE Ctr Synthet Microbiol, Karl Von Frisch Str 14, D-35043 Marburg, Germany
关键词
synthetic biology; optogenetic interaction switches; two-component systems; protein interactions; biotechnology; fluorescence; light-sensing domains; GENE-EXPRESSION SYSTEM; NEAR-INFRARED LIGHT; OPTICAL CONTROL; PSEUDOMONAS-AERUGINOSA; ALLOSTERIC CONTROL; ESCHERICHIA-COLI; RNA-POLYMERASE; LOV2; DOMAIN; PROTEIN; ACTIVATION;
D O I
10.1093/femsre/fuab055
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria. This review highlights the diversity of optogenetic approaches in prokaryotes and aims to provides microbiologists with a guide for the application of light for precise, reversible and non-invasive control of biological processes in bacteria.
引用
收藏
页数:17
相关论文
共 168 条
[1]   Engineering of a green-light inducible gene expression system in Synechocystis sp PCC6803 [J].
Abe, Koichi ;
Miyake, Kotone ;
Nakamura, Mayumi ;
Kojima, Katsuhiro ;
Ferri, Stefano ;
Ikebukuro, Kazunori ;
Sode, Koji .
MICROBIAL BIOTECHNOLOGY, 2014, 7 (02) :177-183
[2]   Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells [J].
Baaske, Julia ;
Gonschorek, Patrick ;
Engesser, Raphael ;
Dominguez-Monedero, Alazne ;
Raute, Katrin ;
Fischbach, Patrick ;
Mueller, Konrad ;
Cachat, Elise ;
Schamel, Wolfgang W. A. ;
Minguet, Susana ;
Davies, Jamie A. ;
Timmer, Jens ;
Weber, Wilfried ;
Zurbriggen, Matias D. .
SCIENTIFIC REPORTS, 2018, 8
[3]   Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria [J].
Baumschlager, Armin ;
Khammash, Mustafa .
ADVANCED BIOLOGY, 2021, 5 (05)
[4]   Exploiting natural chemical photosensitivity of anhydrotetracycline and tetracycline for dynamic and setpoint chemo-optogenetic control [J].
Baumschlager, Armin ;
Rullan, Marc ;
Khammash, Mustafa .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control [J].
Baumschlager, Armin ;
Aoki, Stephanie K. ;
Khammash, Mustafa .
ACS SYNTHETIC BIOLOGY, 2017, 6 (11) :2157-2167
[6]   Bacterial Proteasomes: Mechanistic and Functional Insights [J].
Becker, Samuel H. ;
Darwin, K. Heran .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2017, 81 (01)
[7]   Mitochondrial light switches: optogenetic approaches to control metabolism [J].
Berry, Brandon J. ;
Wojtovich, Andrew P. .
FEBS JOURNAL, 2020, 287 (21) :4544-4556
[8]   Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells [J].
Blain-Hartung, Matthew ;
Rockwell, Nathan C. ;
Moreno, Marcus V. ;
Martin, Shelley S. ;
Gan, Fei ;
Bryant, Donald A. ;
Lagarias, J. Clark .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (22) :8473-8483
[9]   The Birth of Optogenetics [J].
Boyden, Edward S. .
SCIENTIST, 2011, 25 (07) :30-35
[10]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268