Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration
被引:24
|
作者:
Zhang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R ChinaChina Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
Zhang, Fei
[1
]
Huang, Weizhang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas, Dept Math, Lawrence, KS 66045 USAChina Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
Huang, Weizhang
[2
]
Li, Xianping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Math & Stat, 5120 Rockhill Rd, Kansas City, MO 64110 USAChina Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
Li, Xianping
[3
]
Zhang, Shicheng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R ChinaChina Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
Zhang, Shicheng
[1
]
机构:
[1] China Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Missouri, Dept Math & Stat, 5120 Rockhill Rd, Kansas City, MO 64110 USA
A moving mesh finite element method is studied for the numerical solution of a phase-field model for brittle fracture. The moving mesh partial differential equation approach is employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain tensor into tensile and compressive components is essential for the success of the phase-field modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity in the governing equation. This makes the governing equation much more difficult to solve and, in particular, Newton's iteration often fails to converge. Three regularization methods are proposed to smooth out the decomposition of the strain tensor. Numerical examples of fracture propagation under quasi-static load demonstrate that all of the methods can effectively improve the convergence of Newton's iteration for relatively small values of the regularization parameter but without compromising the accuracy of the numerical solution. They also show that the moving mesh finite element method is able to adaptively concentrate the mesh elements around propagating cracks and handle multiple and complex crack systems. (c) 2017 Elsevier Inc. All rights reserved.
机构:
Amirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, IranAmirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, Iran
Saberi, Hossein
Nguyen, Chuyen Thanh
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Duy Tan Res Inst Comp Engn DTRICE, Ho Chi Minh City 700000, Vietnam
Duy Tan Univ, Fac Civil Engn, Da Nang 550000, VietnamAmirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, Iran
Nguyen, Chuyen Thanh
Saberi, Hamid
论文数: 0引用数: 0
h-index: 0
机构:
Sahand Univ Technol, Dept Petr & Nat Gas Engn, Tabriz, IranAmirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, Iran
机构:
Duy Tan Univ, Duy Tan Res Inst Comp Engn DTRICE, Ho Chi Minh City 700000, Vietnam
Duy Tan Univ, Fac Civil Engn, Da Nang 550000, VietnamAmirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, Iran
Nguyen, Minh Ngoc
Bui, Tinh Quoc
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Duy Tan Res Inst Comp Engn DTRICE, Ho Chi Minh City 700000, Vietnam
Duy Tan Univ, Fac Civil Engn, Da Nang 550000, VietnamAmirkabir Univ Technol, Dept Civil Engn, Tehran Polytech, Hafez St, Tehran 1591634311, Iran