Polytetrafluoroethylene Surface Modification Using Atmospheric-Pressure Plasma Polymerization

被引:1
作者
Roh, Hee-Sang [1 ]
Lee, Chang-Min [1 ]
Kim, Byung-Hoon [1 ]
Kim, Su-Yeong [1 ]
Jung, Sang-Chul [2 ]
Kook, Min-Suk [3 ]
机构
[1] Chosun Univ, Sch Dent, Dept Dent Mat, Gwangju 61452, South Korea
[2] Sunchon Natl Univ, Dept Environm Engn, Sunchon 57922, South Korea
[3] Chonnam Natl Univ, Sch Dent, Dept Oral & Maxillofacial Surg, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Polytetrafluoroethylene; Atmospheric-Pressure Plasma; Plasma Polymerization; BIODEGRADABLE POLY(BUTYLENE SUCCINATE); GRAFT-POLYMERIZATION; ACRYLIC-ACID; OSTEOBLAST;
D O I
10.1166/jnn.2016.13626
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Expanded polytetrafluoroethylene (e-PTFE) has been widely used in the medical field for bone regeneration around implants and as a maxillofacial tissue filling alternative. The purpose of this study was to investigate the surface properties and biocompatibility of surface modified e-PTFE prepared by atmospheric-pressure acrylic acid (AA) plasma polymerization. After the AA plasma polymerization, surface properties such as hydrophilicity, roughness, and morphology were characterized using water contact angle measurements, atomic force microscopy, and scanning electron microscopy. The contact angle and surface roughness of plasma-polymerized e-PTFE decreased significantly. In vitro results showed higher cell proliferation and good cell adhesion. Atmospheric-pressure AA plasma polymerization may be used to improve the biocompatibility of e-PTFE-based biomaterials.
引用
收藏
页码:11964 / 11967
页数:4
相关论文
共 15 条
[1]   Surface modification of bi-axially expanded poly (tetrafluoroethylene) by plasma polymerization of ethylene [J].
Chen-Yang, YW ;
Chen, CW ;
Tseng, SC ;
Huang, J ;
Wu, YZ .
SURFACE & COATINGS TECHNOLOGY, 2004, 176 (02) :148-156
[2]  
Gupta B, 2010, INDIAN J FIBRE TEXT, V35, P9
[3]   Ion beam modification of ePTFE for improving the blood compatibility [J].
Hiruma, Hitomi ;
Toida, Hiroshi ;
Hanawa, Takao ;
Sakuragi, Hitoshi ;
Suzuki, Yoshiaki .
SURFACE & COATINGS TECHNOLOGY, 2011, 206 (05) :905-910
[4]   The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts [J].
Hoshi, Ryan A. ;
Van Lith, Robert ;
Jen, Michele C. ;
Allen, Josephine B. ;
Lapidos, Karen A. ;
Ameer, Guillermo .
BIOMATERIALS, 2013, 34 (01) :30-41
[5]   Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients [J].
Kunzler, Tobias P. ;
Drobek, Tanja ;
Schuler, Martin ;
Spencer, Nicholas D. .
BIOMATERIALS, 2007, 28 (13) :2175-2182
[6]   Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19:: Phenotypic and genotypic responses observed in vitro [J].
Liu, Xiaomei ;
Lim, Jung Yul ;
Donahue, Henry J. ;
Dhurjati, Ravi ;
Mastro, Andrea M. ;
Vogler, Erwin A. .
BIOMATERIALS, 2007, 28 (31) :4535-4550
[7]   Polymerization of acrylic acid on expanded poly(tetrafluoroethylene) tube by APGD plasma treatment [J].
Njatawidjaja, Ellyana ;
Kodama, Makoto ;
Matsuzaki, Kenji ;
Yasuda, Keishu ;
Matsuda, Takehisa .
PLASMA PROCESSES AND POLYMERS, 2006, 3 (4-5) :338-341
[8]   Preparation of PTFE Film With Adhesive Surface Treated by Atmospheric-Pressure Nonthermal Plasma Graft Polymerization [J].
Okubo, Masaaki ;
Tahara, Mitsuru ;
Aburatani, Yasushi ;
Kuroki, Tomoyuki ;
Hibino, Toshitomo .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2010, 46 (05) :1715-1721
[9]   Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment [J].
Qian, Yingjia ;
Chi, Lina ;
Zhou, Weili ;
Yu, Zhenjiang ;
Zhang, Zhongzhi ;
Zhang, Zhenjia ;
Jiang, Zheng .
APPLIED SURFACE SCIENCE, 2016, 360 :749-757
[10]   Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance [J].
Seo, Hyun Suk ;
Kim, Byung Hoon ;
Ko, Yeong Mu .
PROGRESS IN ORGANIC COATINGS, 2010, 69 (01) :38-44