Approximate expressions for the period of a simple pendulum using a Taylor series expansion

被引:24
作者
Belendez, Augusto [1 ,2 ]
Arribas, Enrique [3 ]
Marquez, Andres [1 ,2 ]
Ortuno, Manuel [1 ,2 ]
Gallego, Sergi [1 ,2 ]
机构
[1] Univ Alicante, Dept Fis, E-03080 Alicante, Spain
[2] Univ Alicante, Inst Univ Fis Aplicada Ciencias & Tecnol, E-03080 Alicante, Spain
[3] Univ Castilla La Mancha, Dept Fis Aplicada, Escuela Super Ingn Informat, E-02071 Albacete, Spain
关键词
EQUATION-OF-MOTION; FORMULAS;
D O I
10.1088/0143-0807/32/5/018
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.
引用
收藏
页码:1303 / 1310
页数:8
相关论文
共 22 条
[1]   Improved Lindstedt-Poincare method for the solution of nonlinear problems [J].
Amore, P ;
Aranda, A .
JOURNAL OF SOUND AND VIBRATION, 2005, 283 (3-5) :1115-1136
[2]  
[Anonymous], 2005, The Pendulum: A Case Study in Physics
[3]   Application of the homotopy perturbation method to the nonlinear pendulum [J].
Belendez, A. ;
Hernandez, A. ;
Belendez, T. ;
Neipp, C. ;
Marquez, A. .
EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (01) :93-104
[4]   Analytical approximations for the period of a nonlinear pendulum [J].
Belendez, A. ;
Hernandez, A. ;
Marquez, A. ;
Belendez, T. ;
Neipp, C. .
EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (03) :539-551
[5]   Reply to 'Comment on "Approximation for the large-angle simple pendulum period"' [J].
Belendez, A. ;
Rodes, J. J. ;
Belendez, T. ;
Hernandez, A. .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (05) :L83-L86
[6]   Approximation for a large-angle simple pendulum period [J].
Belendez, A. ;
Rodes, J. J. ;
Belendez, T. ;
Hernandez, A. .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (02) :L25-L28
[7]   Higher accurate approximate solutions for the simple pendulum in terms of elementary functions [J].
Belendez, Augusto ;
Frances, Jorge ;
Ortuno, Manuel ;
Gallego, Sergi ;
Guillermo Bernabeu, Jose .
EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (03) :L65-L70
[8]   Cubication of conservative nonlinear oscillators [J].
Belendez, Augusto ;
Alvarez, Mariela L. ;
Fernandez, Elena ;
Pascual, Inmaculada .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (05) :973-981
[9]   Approximations for the period of the simple pendulum based on the arithmetic-geometric mean [J].
Carvalhaes, Claudio G. ;
Suppes, Patrick .
AMERICAN JOURNAL OF PHYSICS, 2008, 76 (12) :1150-1154
[10]  
Carvalhaes CG, 2009, REV BRAS ENSINO FIS, V31