Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
|
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 50 条
  • [41] Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
    Li, Yuwen
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1921 - 1939
  • [42] Strong Solutions for a Phase Field Navier–Stokes Vesicle–Fluid Interaction Model
    Yuning Liu
    Takéo Takahashi
    Marius Tucsnak
    Journal of Mathematical Fluid Mechanics, 2012, 14 : 177 - 195
  • [43] Phase Field Model of Thermo-Induced Marangoni Effects in the Mixtures and its Numerical Simulations with Mixed Finite Element Method
    Sun, Pengtao
    Liu, Chun
    Xu, Jinchao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (05) : 1095 - 1117
  • [44] An Adaptive Mesh Method in Transient Finite Element Analysis of Magnetic Field Using a Novel Error Estimator
    Zhao, Yanpu
    Zhang, Xiu
    Ho, S. L.
    Fu, W. N.
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 4160 - 4163
  • [45] An Interpolating H-adaptive Element Free Galerkin Method for Elasticity Problems
    Wang, Min
    Peng, Gang
    Zhang, Xiaohua
    ENGINEERING LETTERS, 2022, 30 (04)
  • [46] An adaptive phase-field model with variable-node elements for fracture of hyperelastic materials at large deformations
    Xing, Chen
    Yu, Tiantang
    Sun, Yulin
    Wang, Yongxiang
    ENGINEERING FRACTURE MECHANICS, 2023, 281
  • [47] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [48] A convergent adaptive finite element method for electrical impedance tomography
    Jin, Bangti
    Xu, Yifeng
    Zou, Jun
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1520 - 1550
  • [49] Analysis of a phase field Navier-Stokes vesicle-fluid interaction model
    Du, Qiang
    Li, Manlin
    Liu, Chun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (03): : 539 - 556
  • [50] Bioluminescence Tomography Based on Multilevel Adaptive Finite Element Method
    Huang Junlong
    Yu Jingjing
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (06):