Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
|
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 50 条
  • [31] Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation
    Du, Q
    Liu, C
    Ryham, R
    Wang, X
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (03) : 537 - 548
  • [32] Adaptive numerical integration of exponential finite elements for a phase field fracture model
    Darius Olesch
    Charlotte Kuhn
    Alexander Schlüter
    Ralf Müller
    Computational Mechanics, 2021, 67 : 811 - 821
  • [33] Adaptive numerical integration of exponential finite elements for a phase field fracture model
    Olesch, Darius
    Kuhn, Charlotte
    Schlueter, Alexander
    Mueller, Ralf
    COMPUTATIONAL MECHANICS, 2021, 67 (03) : 811 - 821
  • [34] An upwinding mixed finite element method for a mean field model of superconducting vortices
    Chen, ZM
    Du, Q
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 687 - 706
  • [35] A MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR ELASTICITY ON SIMPLICIAL GRIDS
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Nordbotten, Jan M.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 630 - 656
  • [36] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [37] A multipoint stress mixed finite element method for elasticity on quadrilateral grids
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Nordbotten, Jan Martin
    Yotov, Ivan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 1886 - 1915
  • [38] A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD WITH OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhong-Ci
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 291 - 304
  • [39] Adaptive finite element method for optimal control problems
    Yan, Ningning
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1781 - 1784
  • [40] Efficient method for phase-field model with finite interface dissipation
    Zhang, Geng
    Cai, Dan
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 : 139 - 146