Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 53 条
[21]   FINITE-ELEMENT METHODS FOR THE TIME-DEPENDENT GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (12) :119-133
[22]  
DU Q, UNPUB SIAM J APPL
[23]  
Du Q, 2007, INT J NUMER ANAL MOD, V4, P441
[24]  
Du Q, 2007, COMMUN MATH SCI, V5, P233
[25]  
Du Q, 2007, DISCRETE CONT DYN-B, V8, P539
[26]  
Du Q, 2006, J COMPUT MATH, V24, P265
[27]   Finite element modeling of lipid bilayer membranes [J].
Feng, Feng ;
Klug, William S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 220 (01) :394-408
[28]   Spectral implementation of an adaptive moving mesh method for phase-field equations [J].
Feng, W. M. ;
Yu, P. ;
Hu, S. Y. ;
Liu, Z. K. ;
Du, Q. ;
Chen, L. Q. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 220 (01) :498-510
[29]  
Feng XB, 2004, MATH COMPUT, V73, P541, DOI 10.1090/S0025-5718-03-01588-6
[30]   ADAPTIVE MULTILEVEL METHODS FOR OBSTACLE PROBLEMS [J].
HOPPE, RHW ;
KORNHUBER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :301-323