Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 53 条
[1]   A posteriori error estimates for fourth-order elliptic problems [J].
Adjerid, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (23-24) :2539-2559
[2]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[3]  
Babuska I., 2001, NUMER MATH SCI COMP
[4]   Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow [J].
Bao, WZ ;
Du, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1674-1697
[5]  
BIBEN T, 2005, PHYS REV E, V72, P419
[6]   Method for efficient shape parametrization of fluid membranes and vesicles [J].
Bloor, MIG ;
Wilson, MJ .
PHYSICAL REVIEW E, 2000, 61 (04) :4218-4229
[7]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[8]   Numerical analysis for a macroscopic model in micromagnetics [J].
Carstensen, C ;
Praetorius, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2633-2651
[9]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476
[10]   Error control and adaptivity for a phase relaxation model [J].
Chen, ZM ;
Nochetto, RH ;
Schmidt, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (04) :775-797