Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space

被引:129
作者
Kameta, Naohiro [1 ]
Minamikawa, Hiroyuki [1 ]
Masuda, Mitsutoshi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr NTRC, Tsukuba, Ibaraki 3058565, Japan
关键词
SELF-ASSEMBLED NANOTUBES; PEPTIDE NANOTUBES; LIPID TUBULES; GLYCOLIPID NANOTUBE; GRAPHITIC NANOTUBES; CONTROLLED-RELEASE; HELICAL CRYSTALLIZATION; BILAYER-MEMBRANES; ORDERED ARRAYS; FABRICATION;
D O I
10.1039/c0sm01559h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic nanotubes (ONTs) are tubular nanostructures prepared from small organic molecules or macromolecules. These structures have attracted growing attention because their inner and outer spaces exhibit unique properties that may be exploited for potential applications. In the first part of this review, we describe methodologies to construct well-defined ONTs: how to control the dimensions, discriminate the inner and outer surfaces, and functionalize the nanostructures. The well-defined ONTs contain cylindrical nanospaces that can capture, store, and release various nanomaterials, from small molecules to macromolecules. The ONTs' outer spaces and surfaces play critical roles in dispersibility, organization, and manipulation of the ONTs. In the second part, we describe the ONTs' physicochemical properties and utilization of the inner and outer spaces, emphasizing the advantages of ONTs over other types of nanomaterials. Smaller nanomaterials can be efficiently captured in the nanospaces of the ONTs via selective surface interactions. For example, encapsulation of proteins in the ONT nanospaces prevents them from chemical or thermal denaturation. Furthermore, the encapsulated materials can be released in response to external stimuli, such as pH or temperature, which can alter the surface charge and/or fluidity. These unique properties of ONTs allow them to be utilized for biomaterials and drug delivery applications.
引用
收藏
页码:4539 / 4561
页数:23
相关论文
共 154 条
[1]   Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology [J].
Adler-Abramovich, Lihi ;
Gazit, Ehud .
JOURNAL OF PEPTIDE SCIENCE, 2008, 14 (02) :217-223
[2]  
Adler-Abramovich L, 2009, NAT NANOTECHNOL, V4, P849, DOI [10.1038/NNANO.2009.298, 10.1038/nnano.2009.298]
[3]   A Novel Supramolecular Organogel Nanotubular Template Approach for Conducting Nanomaterials [J].
Anilkumar, P. ;
Jayakannan, M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (02) :728-736
[4]  
ASAKAWA M, 2007, SYNTHESIOLOGY, V1, P169
[5]   Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks [J].
Banerjee, IA ;
Yu, LT ;
Matsui, H .
NANO LETTERS, 2003, 3 (03) :283-287
[6]   Magnetic nanotube fabrication by using bacterial magnetic nanocrystals [J].
Banerjee, IA ;
Shima, LYM ;
Yoshino, T ;
Takeyama, H ;
Matsunaga, T ;
Matsui, H .
ADVANCED MATERIALS, 2005, 17 (09) :1128-+
[7]   Application of host-guest chemistry in nanotube-based device fabrication:: Photochemically controlled immobilization of azobenzene nanotubes on patterned α-CD monolayer/Au substrates via molecular recognition [J].
Banerjee, IA ;
Yu, LT ;
Matsui, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (32) :9542-9543
[8]   Counterion, temperature, and time modulation of nanometric chiral ribbons from gemini-tartrate amphiphiles [J].
Brizard, Aurelie ;
Aime, Carole ;
Labrot, Thomas ;
Huc, Ivan ;
Berthier, Damien ;
Artzner, Franck ;
Desbat, Bernard ;
Oda, Reiko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (12) :3754-3762
[9]   Peptide Nanotube Nematic Phase [J].
Bucak, S. ;
Cenker, C. ;
Nasir, I. ;
Olsson, U. ;
Zackrisson, M. .
LANGMUIR, 2009, 25 (08) :4262-4265
[10]   Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold [J].
Carny, Ohad ;
Shalev, Deborah E. ;
Gazit, Ehud .
NANO LETTERS, 2006, 6 (08) :1594-1597