Bayesian Estimation With Imprecise Likelihoods: Random Set Approach

被引:15
作者
Ristic, Branko [1 ]
机构
[1] Def Sci & Technol Org, ISR Div, Melbourne, Vic 3207, Australia
关键词
Bayesian estimation; Bayesian robustness; random set theory;
D O I
10.1109/LSP.2011.2152392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In many practical applications of statistical signal processing, the likelihood functions are only partially known. The measurement model in this case is affected by two sources of uncertainty: stochastic uncertainty and imprecision. Following the framework of random set theory [1], the paper presents the optimal Bayesian estimator for this problem. The resulting Bayes estimator in general has no analytic closed form solution, but can be approximated, for example, using the Monte Carlo method. A numerical example is included to illustrate the theory.
引用
收藏
页码:395 / 398
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 2013, Mathematics of Data Fusion
[2]  
[Anonymous], 2008, 11 INT C INF FUS I E
[3]  
[Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[4]   Robust Filtering Through Coherent Lower Previsions [J].
Benavoli, Alessio ;
Zaffalon, Marco ;
Miranda, Enrique .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (07) :1567-1581
[5]  
BERGER JO, 1985, SERIES STAT
[6]  
Doucet A, 2001, STAT ENG IN, P3
[7]  
Figueiras J., 2010, Mobile positioning and tracking
[8]   Computing minimal-volume credible sets using interval analysis; Application to Bayesian estimation [J].
Jaulin, Luc .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (09) :3632-3636
[9]  
Klir G., 1999, Uncertainty-based information: Elements of generalized information theory
[10]  
Liu LP, 2008, STUD FUZZ SOFT COMP, V219, P1, DOI 10.1007/978-3-540-44792-4