Mixed Finite Elements for Spatial Regression with PDE Penalization

被引:20
作者
Azzimonti, Laura [1 ]
Nobile, Fabio [2 ]
Sangalli, Laura M. [1 ]
Secchi, Piercesare [1 ]
机构
[1] Politecn Milan, MOX Dipartimento Matemat, I-20133 Milan, Italy
[2] Ecole Polytech Fed Lausanne, MATHICSE CSQI, Lausanne, Switzerland
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2014年 / 2卷 / 01期
关键词
mixed finite element method; fourth order problems; nonparametric regression; smoothing;
D O I
10.1137/130925426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of models at the interface between statistics and numerical analysis. Specifically, we consider nonparametric regression models for the estimation of spatial fields from pointwise and noisy observations, which account for problem-specific prior information, described in terms of a partial differential equation governing the phenomenon under study. The prior information is incorporated in the model via a roughness term using a penalized regression framework. We prove the well-posedness of the estimation problem, and we resort to a mixed equal order finite element method for its discretization. Moreover, we prove the well-posedness and the optimal convergence rate of the proposed discretization method. Finally the smoothing technique is extended to the case of areal data, particularly interesting in many applications.
引用
收藏
页码:305 / 335
页数:31
相关论文
共 31 条