SPECTRAL DECIMATION ON HAMBLY'S HOMOGENEOUS HIERARCHICAL GASKETS

被引:26
作者
Drenning, Shawn [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1215/ijm/1286212923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a complete description of the Dirichlet and Neumann spectra of the Laplacian on a class of homogeneous hierarchical fractals introduced by Hambly. These fractals are finitely ramified but not self-similar. We use the method of spectral decimation. As applications, we show that these spectra always have infinitely many large spectral gaps, allowing for nice convergence results for eigenfunction expansions, and under certain restrictions we give a computer-assisted proof that the set of ratios of eigenvalues has gaps, implying the existence of quasielliptic PDE's on the product of two such fractals. The computer programs used in this paper and more detailed explanations of the algorithms can be found at www.math.cornell.edu/(similar to)s1d32/FractalAnalysis.html.
引用
收藏
页码:915 / 937
页数:23
相关论文
共 21 条
[1]  
Adams B, 2003, TRENDS MATH, P1
[2]  
[Anonymous], 2001, ANAL FRACTALS
[3]   Vibration modes of 3n-gaskets and other fractals [J].
Bajorin, N. ;
Chen, T. ;
Dagan, A. ;
Emmons, C. ;
Hussein, M. ;
Khalil, M. ;
Mody, P. ;
Steinhurst, B. ;
Teplyaev, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
[4]  
Barlow M., 1998, Lecture Notes in Math., V1690, P1, DOI [10.1007/BFb0092537, DOI 10.1007/BFB0092537]
[5]  
BERRY T, EXPT MATH IN PRESS
[6]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[7]  
CONSTANTIN S, COMM PURE A IN PRESS
[8]   Fractal differential equations on the Sierpinski gasket [J].
Dalrymple, K ;
Strichartz, RS ;
Vinson, JP .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) :203-284
[9]  
Fukushima M., 1992, POTENTIAL ANAL, V1, P1, DOI DOI 10.1007/BF00249784
[10]   BROWNIAN-MOTION ON A HOMOGENEOUS RANDOM FRACTAL [J].
HAMBLY, BM .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 94 (01) :1-38