SCHAUDER ESTIMATES FOR SOLUTIONS OF LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

被引:26
作者
Jin, Tianling [1 ]
Xiong, Jingang [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Integro-differential equations; Schauder estimates; MAXIMUM PRINCIPLE; REGULARITY THEORY; OPERATORS; INTERIOR;
D O I
10.3934/dcds.2015.35.5977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove optimal pointwise Schauder estimates in the spatial variables for solutions of linear parabolic integro-differential equations. Optimal Holder estimates in space-time for those spatial derivatives are also obtained.
引用
收藏
页码:5977 / 5998
页数:22
相关论文
共 25 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[3]  
Barrios B, 2014, ANN SCUOLA NORM-SCI, V13, P609
[4]   Regularity results for stable-like operators [J].
Bass, Richard F. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (08) :2693-2722
[5]   INTERIOR SCHAUDER ESTIMATES FOR PARABOLIC DIFFERENTIAL- (OR DIFFERENCE-) EQUATIONS VIA MAXIMUM PRINCIPLE [J].
BRANDT, A .
ISRAEL JOURNAL OF MATHEMATICS, 1969, 7 (03) :254-&
[6]   The Evans-Krylov theorem for nonlocal fully nonlinear equations [J].
Caffarell, Luis ;
Silvestre, Luis .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1163-1187
[7]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[8]   REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS [J].
Caffarelli, Luis ;
Chan, Chi Hin ;
Vasseur, Alexis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :849-869
[9]   Regularity Results for Nonlocal Equations by Approximation [J].
Caffarelli, Luis ;
Silvestre, Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :59-88
[10]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638