Effect of alcohol sacrificial agent on the performance of Cu/TiO2 photocatalysts for UV-driven hydrogen production

被引:50
作者
Chen, Wan-Ting [1 ,2 ,3 ]
Dong, Yusong [1 ]
Yadav, Pooja [1 ]
Aughterson, Robert D. [4 ,5 ]
Sun-Waterhouse, Dongxiao [1 ]
Waterhouse, Geoffrey I. N. [1 ,2 ,3 ]
机构
[1] Univ Auckland, Sch Chem Sci, Auckland, New Zealand
[2] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington, New Zealand
[3] Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
[4] ANSTO, Inst Mat Engn, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
[5] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
关键词
Hydrogen production; Alcohol photoreforming; TiO2; Cu; Au; SURFACE-PLASMON RESONANCE; H-2; PRODUCTION; AU/TIO2; PHOTOCATALYSTS; HIGH-EFFICIENCY; WORK FUNCTION; TIO2; WATER; NANOPARTICLES; CUO; GENERATION;
D O I
10.1016/j.apcata.2020.117703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study systematically investigates alcohol photoreforming over a 1 wt.% Cu/TiO2 photocatalyst under UV excitation (365 nm, 6.5mW cm(-2)), examining the effects of the alcohol (methanol, ethanol, ethylene glycol or glycerol) and alcohol concentration (0-100 vol.%) on H-2 production rates. A 1.25 wt.% CuO/TiO2 photocatalyst, based on Evonik P25, was first synthesized. Various in-situ spectroscopic methods, including Cu K-edge XANES, UV-vis absorbance spectroscopy and EPR spectroscopy, confirmed the reduction of the supported CuO to Cu-0 during alcohol photoreforming. The 1 wt.% Cu/TiO2 photocatalyst formed in-situ demonstrated excellent activity for H-2 production, comparable to a 2 wt.% Au/TiO2 reference photocatalyst. At an alcohol concentration of 10 vol.%, H-2 production rates followed the order glycerol > ethylene glycol > methanol > ethanol. At 50 vol.%, the rates followed the order methanol > ethylene glycol > glycerol approximate to ethanol. The study highlights the potential of Cu-0 as a H-2 evolution co-catalyst.
引用
收藏
页数:17
相关论文
共 115 条
[1]   The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol-water mixtures [J].
Al-Azri, Zakiya H. N. ;
Chen, Wan-Ting ;
Chan, Andrew ;
Jovic, Vedran ;
Ina, Toshiaki ;
Idriss, Hicham ;
Waterhouse, Geoffrey I. N. .
JOURNAL OF CATALYSIS, 2015, 329 :355-367
[2]   H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites [J].
Ampelli, Claudio ;
Passalacqua, Rosalba ;
Genovese, Chiara ;
Perathoner, Siglinda ;
Centi, Gabriele ;
Montini, Tiziano ;
Gombac, Valentina ;
Delgado Jaen, Juan Jose ;
Fornasiero, Paolo .
RSC ADVANCES, 2013, 3 (44) :21776-21788
[3]  
[Anonymous], 2004, Back and bed: ergonomic aspects of sleeping
[4]   Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: Approaches in realizing high efficiency in the use of visible light [J].
Anpo, M .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2004, 77 (08) :1427-1442
[5]   The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals [J].
Bahruji, Hasliza ;
Bowker, Michael ;
Davies, Philip R. ;
Kennedy, Julia ;
Morgan, David J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) :1465-1471
[6]   New insights into the mechanism of photocatalytic reforming on Pd/TiO2 [J].
Bahruji, Hasliza ;
Bowker, Michael ;
Davies, Philip R. ;
Pedrono, Fabien .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 107 (1-2) :205-209
[7]   Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O [J].
Bandara, J ;
Udawatta, CPK ;
Rajapakse, CSK .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2005, 4 (11) :857-861
[8]  
BARCLAY DJ, 1973, J ELECTROANAL CHEM, V44, P47, DOI 10.1016/S0022-0728(73)80513-3
[9]   Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J].
Barelli, L. ;
Bidini, G. ;
Gallorini, F. ;
Servili, S. .
ENERGY, 2008, 33 (04) :554-570
[10]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380