Neural network (NN) based decoders have appeared as potential candidates to replace successive cancellation (SC) based and belief propagation (BP) decoders for polar codes, due to their one-shot-decoding property. Partitioned NN (PNN) decoder has provided a solution to make use of multiple NN decoders which are connected with BP decoding, with the presence of insufficient training data for practical-length polar codes. However, PNN decoder requires BP iterations that detrimentally affect the decoding latency as compared to non-iterative approaches. In this paper, we propose a neural SC (NSC) decoder to overcome the issue associated with PNN. Unlike PNN, the NSC decoder is constructed by multiple NN decoders connected with SC decoding. Compared to a PNN decoder for a polar code of length 128 and rate 0.5, the proposed NSC decoder achieves the same decoding performance, while reducing the decoding latency by 42.5%.