Review on High-Loading and High-Energy Lithium-Sulfur Batteries

被引:1325
作者
Peng, Hong-Jie [1 ]
Huang, Jia-Qi [1 ]
Cheng, Xin-Bing [1 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
composite cathodes; electrolytes; lithium-sulfur batteries; lithium metal anodes; multifunctional separators; polysulfides; LI-S BATTERIES; SOLID-ELECTROLYTE INTERPHASE; REDUCED-GRAPHENE-OXIDE; LONG-CYCLE-LIFE; CARBON CURRENT COLLECTOR; COATED SULFUR/CARBON COMPOSITE; HIERARCHICAL POROUS GRAPHENE; NUCLEAR-MAGNETIC-RESONANCE; HIGH-PERFORMANCE CATHODE; METAL-ORGANIC FRAMEWORK;
D O I
10.1002/aenm.201700260
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Owing to high specific energy, low cost, and environmental friendliness, lithium-sulfur (Li-S) batteries hold great promise to meet the increasing demand for advanced energy storage beyond portable electronics, and to mitigate environmental problems. However, the application of Li-S batteries is challenged by several obstacles, including their short life and low sulfur utilization, which become more serious when sulfur loading is increased to the practically accepted level above 3-5 mg cm(-2). More and more efforts have been made recently to overcome the barriers toward commercially viable Li-S batteries with a high sulfur loading. This review highlights the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale. Particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator are under specific concerns. Hierarchy in the multiscale design is proposed to guide the future development of high-sulfur-loading Li-S batteries.
引用
收藏
页数:54
相关论文
共 563 条
[1]   Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries [J].
Abbas, Syed Ali ;
Ibrahem, Mohammad Aziz ;
Hu, Lung-Hao ;
Lin, Chia-Nan ;
Fang, Jason ;
Boopathi, Karunakara Moorthy ;
Wang, Pen-Cheng ;
Li, Lain-Jong ;
Chu, Chih-Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9661-9669
[2]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[3]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[4]   Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries [J].
Ai, Guo ;
Dai, Yiling ;
Mao, Wenfeng ;
Zhao, Hui ;
Fu, Yanbao ;
Song, Xiangyun ;
En, Yunfei ;
Battaglia, Vincent S. ;
Srinivasan, Venkat ;
Liu, Gao .
NANO LETTERS, 2016, 16 (09) :5365-5372
[5]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[8]   Understanding the Effect of a Fluorinated Ether on the Performance of Lithium-Sulfur Batteries [J].
Azimi, Nasim ;
Xue, Zheng ;
Bloom, Ira ;
Gordin, Mikhail L. ;
Wang, Donghai ;
Daniel, Tad ;
Takoudis, Christos ;
Zhang, Zhengcheng .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (17) :9169-9177
[9]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[10]   Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries [J].
Balach, J. ;
Jaumann, T. ;
Muehlenhoff, S. ;
Eckert, J. ;
Giebeler, L. .
CHEMICAL COMMUNICATIONS, 2016, 52 (52) :8134-8137