Multi-modal and temporal logics with universal formula - Reduction of admissibility to validity and unification

被引:16
作者
Rybakov, V. [1 ]
机构
[1] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M1 5GD, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
decidability; algorithms; logical consecutions; inference rules; temporal logic; linear temporal logic; admissible rules;
D O I
10.1093/logcom/exm078
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The article studies multi-modal (in particular temporal, tense, logics) possessing universal formulas. We prove (Theorems 11 and 12) that the admissibility problem for inference rules (inference rules with parameters) is decidable for all decidable multi-modal (in particular, temporal) logics possessing an universal formula and decidable w.r.t. unification (unification with parameters). These theorems use characterizations of admissible rules in terms of valid rules and unifiable formulas. Results are applied to wide range of multi-modal logics, including all linear transitive temporal logics, all temporal logics with bounded zigzag, all multi-modal logics with explicit universal modality. As consequence, we show that the admissibility problem for all such logics is decidable (e. g. for all logics of the series S4(n)U, n epsilon N).
引用
收藏
页码:509 / 519
页数:11
相关论文
共 34 条
[1]  
ARECES G, 2000, LOG J IGPL, V8, P653
[2]   NOTE ON A PAPER IN TENSE LOGIC [J].
BULL, RA .
JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) :215-&
[3]   AN ALGEBRAIC STUDY OF TENSE LOGICS WITH LINEAR TIME [J].
BULL, RA .
JOURNAL OF SYMBOLIC LOGIC, 1968, 33 (01) :27-&
[4]  
Chagrov A., 1992, Algebra and Logic, V31, P53
[5]  
FRIEDMAN H, 1975, J SYMBOLIC LOGIC, V40, P113, DOI 10.2307/2271891
[6]  
Gabbay D. M., 1990, Journal of Logic and Computation, V1, P229, DOI 10.1093/logcom/1.2.229
[7]   Filtering unification and most general unifiers in modal logic [J].
Ghilardi, S ;
Sacchetti, L .
JOURNAL OF SYMBOLIC LOGIC, 2004, 69 (03) :879-906
[8]   Best solving modal equations [J].
Ghilardi, S .
ANNALS OF PURE AND APPLIED LOGIC, 2000, 102 (03) :183-198
[9]  
Goldblatt R., 1992, LECT NOTES, V7
[10]  
Goldblatt Robert., 2003, J APPL LOGIC, V1, P309