Multiple positive solutions for singular BVPs on the positive half-line

被引:35
作者
Djebali, Smail [1 ]
Mebarki, Karima [2 ]
机构
[1] ENS, Dept Math, Algiers 16050, Algeria
[2] UMBB, Fac Fundamental Sci, Dept Math, Boumerdes 35000, Algeria
关键词
fixed point theorem; positive solution; singular problem; cone; compactness; infinity interval;
D O I
10.1016/j.camwa.2007.11.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we are concerned with the existence of multiple positive solutions to a second-order nonlinear singular boundary value problem set on the positive half-line. We mainly use the Krasnozels' kii and Leggett-Williams fixed point theorems in cones to prove existence of one positive solution, two positive solutions and three positive solutions. The results complement, extend and correct some recent ones. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2940 / 2952
页数:13
相关论文
共 15 条
[1]  
Agarwal R, 2001, CAMBRIDGE TRACTS MAT, V141
[2]  
Bielecki A., 1956, Bull. Acad. Polon. Sci. Ser. Sci. Math. Phys. Astr, V4, P261
[3]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[4]  
DJEBALI, 2006, ELECT J QUAL THEORY, P1
[5]  
Djebali S., 2007, COMMUN APPL NONLINEA, V14, P13
[6]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[7]   Positive solutions of operator equations on half-line [J].
Hao, ZC ;
Liang, J ;
Xiao, TJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :423-435
[8]  
KRASNOZELS MA, 1964, POSITIVE SOLUTIONS O
[9]   MULTIPLE POSITIVE FIXED-POINTS OF NON-LINEAR OPERATORS ON ORDERED BANACH-SPACES [J].
LEGGETT, RW ;
WILLIAMS, LR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) :673-688
[10]   Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals [J].
Meehan, M ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (03) :355-387