Adsorption behavior of 99Tc on Fe, Fe2O3 and Fe3O4

被引:15
|
作者
Liu, DJ [1 ]
Fan, XH [1 ]
机构
[1] China Inst Atom Energy, Beijing 102413, Peoples R China
关键词
D O I
10.1007/s10967-005-0772-z
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The adsorption of Tc-99 on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10(-8)M-10(-2)M. Under aerobic conditions, the adsorption ratios of Tc-99 on Fe2O3 and Fe3O4 were not influenced by pH and CO32- concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10(-8)M-10(-2)M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich's equation under both aerobic and anoxic conditions.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 50 条
  • [1] Study on adsorption of 99Tc on Fe, Fe2O3 and Fe3O4
    Liu, De-Jun
    Fan, Xian-Hua
    Zhang, Ying-Jie
    Yao, Jun
    Zhou, Duo
    Wang, Yong
    He-Huaxue yu Fangshe Huaxue/Journal of Nuclear and Radiochemistry, 2004, 26 (01):
  • [2] Adsorption behavior of 99Tc on Fe, Fe2O3 and Fe2O4
    D. J. Liu
    X. H. Fan
    Journal of Radioanalytical and Nuclear Chemistry, 2005, 264 : 691 - 698
  • [3] 99Tc在Fe,Fe2O3和Fe3O4上的吸附行为研究
    刘德军
    范显华
    章英杰
    姚军
    周舵
    王勇
    核化学与放射化学, 2004, (01) : 23 - 28
  • [4] Synthesis of Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    PAN Lu
    TANG Jing
    CHEN YongHong
    Science China(Chemistry), 2013, 56 (03) : 362 - 369
  • [5] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [6] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Lu Pan
    Jing Tang
    YongHong Chen
    Science China Chemistry, 2013, 56 : 362 - 369
  • [7] Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces
    Pabisiak, Tomasz
    Kiejna, Adam
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (13):
  • [8] Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles
    Spencer, Elinor C.
    Ross, Nancy L.
    Olsen, Rebecca E.
    Huang, Baiyu
    Kolesnikov, Alexander I.
    Woodfield, Brian F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9609 - 9616
  • [9] Interactions in γ-Fe2O3 and Fe3O4 nanoparticle systems
    Laha, S. S.
    Tackett, R. J.
    Lawes, G.
    PHYSICA B-CONDENSED MATTER, 2014, 448 : 69 - 72
  • [10] Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method
    Mohanraj, Kannusamy
    Sivakumar, Ganesan
    SAINS MALAYSIANA, 2017, 46 (10): : 1935 - 1942