Jordan blocks of cuspidal representations of symplectic groups

被引:10
作者
Blondel, Corinne [1 ]
Henniart, Guy [2 ]
Stevens, Shaun [3 ]
机构
[1] Univ Paris Diderot, CNRS IMJ PRG, Paris, France
[2] Univ Paris Sud, Lab Math Orsay, Orsay, France
[3] Univ East Anglia, Sch Math, Norwich, Norfolk, England
基金
英国工程与自然科学研究理事会;
关键词
local Langlands correspondence; symplectic group; p-adic group; Jordan block; endoparameter; types and covers; CONTRAGREDIENT SUPERCUSPIDAL REPRESENTATIONS; SMOOTH REPRESENTATIONS; SEMISIMPLE TYPES; DISCRETE-SERIES; CHARACTERS; GL(N);
D O I
10.2140/ant.2018.12.2327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a symplectic group over a nonarchimedean local field of characteristic zero and odd residual characteristic. Given an irreducible cuspidal representation of G, we determine its Langlands parameter (equivalently, its Jordan blocks in the language of Maeglin) in terms of the local data from which the representation is explicitly constructed, up to a possible unramified twist in each block of the parameter. We deduce a ramification theorem for G, giving a bijection between the set of endoparameters for G and the set of restrictions to wild inertia of discrete Langlands parameters for G, compatible with the local Langlands correspondence. The main tool consists in analyzing the Hecke algebra of a good cover, in the sense of Bushnell-Kutzko, for parabolic induction from a cuspidal representation of G x GL(n), seen as a maximal Levi subgroup of a bigger symplectic group, in order to determine reducibility points; a criterion of Maeglin then relates this to Langlands parameters.
引用
收藏
页码:2327 / 2386
页数:60
相关论文
共 35 条
[2]  
[Anonymous], 1984, ANN MATH STUDIES
[3]  
[Anonymous], 2006, GRUNDLEHREN MATH WIS
[4]  
Arthur J., 2013, Amer. Math. Soc. Colloq. Publ., V61
[5]  
Blondel C, 2004, ANN SCI ECOLE NORM S, V37, P533, DOI 10.1016/S0012-9593(04)00037-0
[6]   Weil representation and β-extensions [J].
Blondel, Corinne .
ANNALES DE L INSTITUT FOURIER, 2012, 62 (04) :1319-1366
[7]   Genericity of supercuspidal representations of p-adic Sp4 [J].
Blondel, Corinne ;
Stevens, Shaun .
COMPOSITIO MATHEMATICA, 2009, 145 (01) :213-246
[8]  
Bushnell C. J., 2014, MEM AM MATH SOC, V1087
[9]   The essentially tame local Langlands correspondence, I [J].
Bushnell, CJ ;
Henniart, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :685-710
[10]   Local tame lifting for GL(n) IV:: Simple characters and base change [J].
Bushnell, CJ ;
Henniart, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :337-362