An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

被引:18
作者
Bresch, D [1 ]
Gisclon, M
Lin, CK
机构
[1] UJF, INRIA, INPG, CNRS,LMC IMAG, F-38051 Grenoble, France
[2] Univ Savoie, LAMA, UMR 5127, CNRS, F-73376 Le Bourget Du Lac, France
[3] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 03期
关键词
compressible flows; Navier-Stokes equations; low Mach (Froude) Number limit shallow-water equations; lake equations; nonconstant density;
D O I
10.1051/m2an:2005026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions' book that means with constant viscosity coefficients.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 18 条
[11]  
Levermore CD, 1996, INDIANA U MATH J, V45, P479
[12]   A shallow water model with eddy viscosity for basins with varying bottom topography [J].
Levermore, CD ;
Sammartino, M .
NONLINEARITY, 2001, 14 (06) :1493-1515
[13]  
Lions P.-L., 1998, MATH TOPICS FLUID DY, V2
[14]   Incompressible limit for a viscous compressible fluid [J].
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (06) :585-627
[15]  
Métivier G, 2001, ARCH RATION MECH AN, V158, P61, DOI 10.1007/s002050100140
[16]  
METIVIER G, 2001, ECOLE POLYTECHNIQUE
[17]   Justification of the shallow-water limit for a rigid-lid flow with bottom topography [J].
Oliver, M .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1997, 9 (3-4) :311-324
[18]  
Pedlosky J., 1987, Geophysical Fluid Dynamics