An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

被引:18
作者
Bresch, D [1 ]
Gisclon, M
Lin, CK
机构
[1] UJF, INRIA, INPG, CNRS,LMC IMAG, F-38051 Grenoble, France
[2] Univ Savoie, LAMA, UMR 5127, CNRS, F-73376 Le Bourget Du Lac, France
[3] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 03期
关键词
compressible flows; Navier-Stokes equations; low Mach (Froude) Number limit shallow-water equations; lake equations; nonconstant density;
D O I
10.1051/m2an:2005026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions' book that means with constant viscosity coefficients.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 18 条
[1]  
ALAZARD T, 2004, UNPUB INCOMPRESSIBLE
[2]  
Bresch D, 2004, DISCRETE CONT DYN-A, V11, P47
[3]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[4]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[5]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[6]  
DANCHIN R, 2000, SEMINAIRE ECOLE POLY
[7]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[8]  
GALLAGHER I, 2003, SEMINAIRE BOURBAKI
[9]  
Gerbeau JF, 2001, DISCRETE CONT DYN-B, V1, P89
[10]   Oscillatory perturbations of the Navier Stokes equations [J].
Grenier, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :477-498