Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

被引:39
|
作者
Kou, Jisheng [1 ]
Sun, Shuyu [2 ,3 ]
Wang, Xiuhua [1 ]
机构
[1] Hubei Engn Univ, Sch Math & Stat, Xiaogan 432000, Hubei, Peoples R China
[2] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Computat Transport Phenomena Lab, Thuwal 239556900, Saudi Arabia
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface tension; Multi-component mixtures; Euler-Lagrange equations; Gradient theory; PHASE-FIELD MODELS; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; PURE COMPONENTS; FORMULATION; TRANSPORT; STRATEGY;
D O I
10.1016/j.cma.2014.10.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 50 条
  • [1] Modeling of the surface tension of multicomponent mixtures with the gradient theory of fluid interfaces
    Miqueu, C. (chris.miqueu@univ-pau.fr), 2005, American Chemical Society (44):
  • [2] Modeling of the surface tension of multicomponent mixtures with the gradient theory of fluid interfaces
    Miqueu, C
    Mendiboure, B
    Graciaa, A
    Lachaise, J
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (09) : 3321 - 3329
  • [3] Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces
    Miqueu, C
    Mendiboure, B
    Graciaa, C
    Lachaise, J
    FLUID PHASE EQUILIBRIA, 2004, 218 (02) : 189 - 203
  • [4] One-fluid theory of liquid-vapor surface tension in simple multi-component mixtures
    Kalikmanov, VI
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (09): : 3678 - 3682
  • [5] An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces
    Kou, Jisheng
    Sun, Shuyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 593 - 604
  • [6] Fluid-Fluid Interfaces of Multi-Component Mixtures in Local Equilibrium
    Bedeaux, Dick
    Kjelstrup, Signe
    ENTROPY, 2018, 20 (04):
  • [7] THEORY OF MULTI-COMPONENT FLUID MIXTURES .1. STATISTICAL ORDER-DISORDER ANALYSIS IN MULTI-COMPONENT FLUID MIXTURES
    SALSBURG, ZW
    WOJTOWICZ, PJ
    KIRKWOOD, JG
    JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (06): : 1533 - 1541
  • [8] ON A THEORY OF MULTI-COMPONENT MIXTURES
    MILLS, N
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1967, 20 : 499 - &
  • [9] Wetting problem for multi-component fluid mixtures
    Gouin, Henri
    Gavrilyuk, Sergey
    Physica A: Statistical Mechanics and its Applications, 1999, 268 (3-4): : 291 - 308
  • [10] Wetting problem for multi-component fluid mixtures
    Gouin, H
    Gavrilyuk, S
    PHYSICA A, 1999, 268 (3-4): : 291 - 308