A linear quadrilateral shell element with fast stiffness computation

被引:48
|
作者
Gruttmann, F
Wagner, W
机构
[1] Univ Karlsruhe TH, Inst Baustat, D-76131 Karlsruhe, Germany
[2] Tech Univ Darmstadt, Inst Werkstoffe & Mech Bauwesen, D-64287 Darmstadt, Germany
关键词
Reissner-Mindlin shell theory; Hellinger-Reissner variational principle; quadrilateral shell element; effective analytical stiffness evaluation; one point integration and stabilization matrix; in-plane and bending patch;
D O I
10.1016/j.cma.2004.11.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new quadrilateral shell element with 5/6 nodal degrees of freedom is presented. Assuming linear isotropic elasticity a Hellinger-Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the membrane forces as well as for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition is integrated analytically. This leads to a part obtained by one point integration and a stabilization matrix. The element possesses the correct rank, is free of locking and is applicable within the whole range of thin and thick shells. The in-plane and bending patch tests are fulfilled and the computed numerical examples show that the convergence behaviour of the stress resultants is very good in comparison to comparable existing elements. The essential advantage is the fast stiffness computation due to the analytically integrated matrices. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:4279 / 4300
页数:22
相关论文
共 50 条
  • [31] Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes
    Boffi, D
    Kikuchi, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02): : 265 - 273
  • [32] Element edge quadrature method for 4-node quadrilateral element for the evaluation of element stiffness matrix
    Johnson, Shyjo
    Jeyapoovan, T.
    Nagarajan, D.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2020, 9 (03)
  • [33] FORMULATION OF AN IMPERFECT QUADRILATERAL DOUBLY CURVED SHELL ELEMENT FOR POSTBUCKLING ANALYSIS
    KAPANIA, RK
    YANG, TY
    AIAA JOURNAL, 1986, 24 (02) : 310 - 311
  • [34] A one-point quadrature, quadrilateral shell element with physical stabilization
    Gao, Hui
    Li, Guangyao
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND MECHANICS 2007, VOLS 1 AND 2, 2007, : 829 - 834
  • [35] A 9-node co-rotational quadrilateral shell element
    Li, Z. X.
    Izzuddin, B. A.
    Vu-Quoc, L.
    COMPUTATIONAL MECHANICS, 2008, 42 (06) : 873 - 884
  • [36] A stabilized co-rotational curved quadrilateral composite shell element
    Li, Z. X.
    Liu, Y. F.
    Izzuddin, B. A.
    Vu-Quoc, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (08) : 975 - 999
  • [37] A 9-node co-rotational quadrilateral shell element
    Z. X. Li
    B. A. Izzuddin
    L. Vu-Quoc
    Computational Mechanics, 2008, 42 : 873 - 884
  • [38] A rotation-free quadrilateral thin shell subdivision finite element
    Green, S
    Turkiyyah, GM
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2005, 21 (12): : 757 - 767
  • [39] Geometrically non-linear quasi-conforming nine-node quadrilateral degenerated solid shell element
    Guan, Y.
    Tang, L.
    1600, John Wiley & Sons Ltd, Chichester, Engl (38):
  • [40] EFFICIENT LINEAR AND NONLINEAR HEAT-CONDUCTION WITH A QUADRILATERAL ELEMENT
    LIU, WK
    BELYTSCHKO, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (05) : 931 - 948