On properties of solutions of quasilinear second-order elliptic inequalities

被引:12
作者
Kon'kov, Andrej A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Differential Equat, Moscow 119992, Russia
关键词
Nonlinear operators; Elliptic inequalities; Unbounded domains; COMPARISON-THEOREMS; NONEXISTENCE; EQUATIONS;
D O I
10.1016/j.na.2015.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an unbounded open subset of Rn, n >= 2, and A : Omega x R-n -> R-n be a function such that C-1 vertical bar zeta vertical bar(p) <= zeta A(x,zeta), vertical bar A(x,zeta)vertical bar <= C-2 vertical bar zeta vertical bar(p-1) with some constants C-1 > 0, C-2 > 0, and p >1 for almost all x is an element of Omega and for all zeta is an element of R-n we obtain blow-up conditions and priori estimates fro inequalities of the form div A(x, Du) + b(x)vertical bar Du vertical bar(alpha) >= q(x)g(u) in Omega, where p - 1 <= alpha <= p is a real number and b, q, and g are non-negative functions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 114
页数:26
相关论文
共 22 条
[1]  
[Anonymous], 1957, PACIFIC J MATH
[2]  
[Anonymous], 1985, Springer Series in Soviet Mathematics, DOI DOI 10.1007/978-3-662-09922-3
[3]  
[Anonymous], 2001, T MAT I STEKLOVA
[4]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[5]  
D'Ambrosio L, 2012, ADV DIFFERENTIAL EQU, V17, P935
[6]   Liouville theorems for anisotropic quasilinear inequalities [J].
D'Ambrosio, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2855-2869
[7]  
Farina A, 2011, J DIFFER EQUATIONS, V250, P4409, DOI 10.1016/j.jde.2011.02.016
[8]   Entire solutions of completely coercive quasilinear elliptic equations [J].
Farina, Alberto ;
Serrin, James .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (12) :4367-4408
[9]   Non-existence of entire solutions of degenerate elliptic inequalities with weights [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (01) :155-179
[10]   On entire solutions of degenerate elliptic differential inequalities with nonlinear gradient terms [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :689-697