Configurational heat capacity of various polymers above the glass transition temperature

被引:1
|
作者
Nishiyama, Eri [1 ]
Yokota, Marika [2 ]
Tsukushi, Itaru [3 ]
机构
[1] Kokushikan Univ, Sch Sci & Engn, Setagaya Ku, 4-28-1 Setagaya, Tokyo 1548515, Japan
[2] Nihon Univ, Sch Med, Inst Liberal Educ, Div Phys,Itabashi Ku, 30-1 Ohyaguchikami Chou, Tokyo 1738610, Japan
[3] Chiba Inst Technol, Grad Sch Engn, 2-1-1 Shibazono, Narashino, Chiba 2750023, Japan
关键词
THERMODYNAMIC PROPERTIES; SOLID POLYETHERS; POLYMERIZATION; ENTHALPY; ENTROPY;
D O I
10.1038/s41428-021-00582-z
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We estimated the configurational heat capacity for 21 types of polymers above the glass transition temperature (T-g) using molecular vibration analysis. The polymers for which the configurational heat capacity was determined are listed as follows: six types of linear polymers with a carbon backbone: poly(1-butene) (PBE), poly(methyl acrylate) (PMA), poly(1-hexene) (PHE), polyisoprene (PIP), poly(vinyl fluoride) (PVF), polypropylene (PP), eight types of polyesters: poly(glycolide) (PGL), poly(propiolactone) (PPL), poly(butyrolactone) (PBL), poly(valerolactone) (PVL), polycaprolactone (PCL), polyundecanolactone (PUDL), polytridecanolactone (PTDL) and polypentadecanolactone (PPDL), and seven types of poly(oxide): poly (oxytrimethylene) (PO3M), poly(oxytetramethylene) (PO4M), poly(oxypropylene) (POP), poly(oxymethylene-oxytetramethylene) (POMOM), poly(oxymethylene-oxyethylene) (POMOE), poly(oxyethylene) (POE), and PO4M), poly(oxy(2,6-dimethyl-1,4-phenylene)) (PODMP). As the temperature increases, the configurational heat capacity of all polymers decreases. Based on Landau's theory, the obtained heat capacity can be well reproduced by using power and logarithmic functions.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
  • [11] Effect of chemical structure of amorphous polymers on heat capacity difference at glass transition temperature
    Hatakeyama, T.
    Hatakeyama, H.
    Thermochimica Acta, 267
  • [12] INFLUENCE OF TEMPERATURE ON THE DIFFUSION OF SOLVENTS IN POLYMERS ABOVE THE GLASS-TRANSITION TEMPERATURE
    JU, ST
    DUDA, JL
    VRENTAS, JS
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1981, 20 (02): : 330 - 335
  • [13] Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature
    Fang, Xiaoyi
    Domenek, Sandra
    Ducruet, Violette
    Refregiers, Matthieu
    Vitrac, Olivier
    MACROMOLECULES, 2013, 46 (03) : 874 - 888
  • [14] DEPOLARIZATION THERMOCURRENTS STUDY OF POLYMERS ABOVE GLASS-TRANSITION TEMPERATURE
    LACABANNE, C
    CHATAIN, D
    JOURNAL OF PHYSICAL CHEMISTRY, 1975, 79 (03): : 283 - 287
  • [15] Elongational behavior of amorphous polymers in the vicinity and above the glass transition temperature
    Thevenon, Anthony
    Fulchiron, Rene
    POLYMER TESTING, 2013, 32 (04) : 691 - 700
  • [16] Evaluation of the heat capacity of amorphous polymers composed of a carbon backbone below their glass transition temperature
    Yokota, Marika
    Sugane, Kaito
    Tsukushi, Itaru
    Shibata, Mitsuhiro
    POLYMER JOURNAL, 2020, 52 (07) : 765 - 774
  • [17] Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature
    Marika Yokota
    Itaru Tsukushi
    Polymer Journal, 2020, 52 : 1113 - 1120
  • [18] Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature
    Yokota, Marika
    Tsukushi, Itaru
    POLYMER JOURNAL, 2020, 52 (09) : 1113 - 1120
  • [19] Evaluation of the heat capacity of amorphous polymers composed of a carbon backbone below their glass transition temperature
    Marika Yokota
    Kaito Sugane
    Itaru Tsukushi
    Mitsuhiro Shibata
    Polymer Journal, 2020, 52 : 765 - 774
  • [20] Change in heat capacity in melting and glass transition of polymers at high pressures
    B. F. Skorodumov
    A. V. Motavkin
    Fibre Chemistry, 2010, 42 : 122 - 125