In this paper we study the uniform stability properties of two classes of parallel server networks with multiple classes of jobs and multiple server pools of a tree topology. These include a class of networks with a single nonleaf server pool, such as the 'N' and 'M' models, and networks of any tree topology with class-dependent service rates. We show that with root n safety staffing, and no abandonment, in the Halfin-Whitt regime, the diffusion-scaled controlled queueing processes are exponentially ergodic and their invariant probability distributions are tight, uniformly over all stationary Markov controls. We use a unified approach in which the same Lyapunov function is used in the study of the prelimit and diffusion limit. A parameter called the spare capacity (safety staffing) of the network plays a central role in characterizing the stability results: the parameter being positive is necessary and sufficient that the limiting diffusion is uniformly exponentially ergodic over all stationary Markov controls. We introduce the concept of "system-wide work conserving policies," which are defined as policies that minimize the number of idle servers at all times. This is stronger than the socalled joint work conservation. We show that, provided the spare capacity parameter is positive, the diffusion-scaled processes are geometrically ergodic and the invariant distributions are tight, uniformly over all "system-wide work conserving policies." In addition, when the spare capacity is negative we show that the diffusion-scaled processes are transient under any stationary Markov control, and when it is zero, they cannot be positive recurrent.