Large Anharmonicity and Low Lattice Thermal Conductivity of Thermoelectric Sn(SbTe2)2

被引:3
作者
Tanusilp, Sora-at [1 ]
Kumagai, Masaya [1 ,2 ]
Ohishi, Yuji [3 ]
Sadayori, Naoki [4 ]
Kurosaki, Ken [1 ,5 ]
机构
[1] Kyoto Univ, Inst Integrated Radiat & Nucl Sci, 2 Asashiro Nishi,Kumatori Cho, Osaka 5900494, Japan
[2] SAKURA Internet Inc, SAKURA Internet Res Ctr, Kita Ku, Grand Front Osaka Tower A 35F,4-20 Ofukacho, Osaka 5300011, Japan
[3] Osaka Univ, Grad Sch Engn, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Nitto Denko Corp, Corp Res & Dev Div, 1-1-2 Shimohozumi, Ibaraki, Osaka 5678680, Japan
[5] Univ Fukui, Res Inst Nucl Engn, 1-3-33 Kanawa Cho, Tsuruga, Fukui 9140055, Japan
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2022年 / 16卷 / 01期
基金
日本科学技术振兴机构;
关键词
anharmonicity; Gruneisen parameters; Sn(SbTe2)(2); thermal conductivity; thermoelectrics;
D O I
10.1002/pssr.202100482
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Very recently, it has been reported that Sn(SbTe2)(2) exhibits a low kappa(lat) (approximate to 0.46 W m(-1) K-1 at 720 K), thus making Sn(SbTe2)(2) a good thermoelectric material. The low kappa(lat) is thought to be due to the anharmonicity of the lattice, but no experimental evidence for this has been reported. Herein, the origin of such low kappa(lat) in Sn(SbTe2)(2) is experimentally investigated by measuring various physical properties and the linear thermal expansion coefficient. The results show that the Gruneisen parameter of Sn(SbTe2)(2) is very high, 3.38, which means that Sn(SbTe2)(2) has a large anharmonicity. Due to this large anharmonicity, the Sn(SbTe2)(2) sample shows a very low kappa(lat) and a relatively high thermoelectric figure of merit zT of 0.32 at 770 K.
引用
收藏
页数:5
相关论文
共 26 条
  • [2] Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    Bell, Lon E.
    [J]. SCIENCE, 2008, 321 (5895) : 1457 - 1461
  • [3] Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
    Fu, Chenguang
    Bai, Shengqiang
    Liu, Yintu
    Tang, Yunshan
    Chen, Lidong
    Zhao, Xinbing
    Zhu, Tiejun
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Estimation of the thermal band gap of a semiconductor from Seebeck measurements
    Goldsmid, HJ
    Sharp, JW
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (07) : 869 - 872
  • [5] Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
    Jain, Anubhav
    Shyue Ping Ong
    Hautier, Geoffroy
    Chen, Wei
    Richards, William Davidson
    Dacek, Stephen
    Cholia, Shreyas
    Gunter, Dan
    Skinner, David
    Ceder, Gerbrand
    Persson, Kristin A.
    [J]. APL MATERIALS, 2013, 1 (01):
  • [6] Entropy engineering promotes thermoelectric performance in p-type chalcogenides
    Jiang, Binbin
    Yu, Yong
    Chen, Hongyi
    Cui, Juan
    Liu, Xixi
    Xie, Lin
    He, Jiaqing
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Characterization of Lorenz number with Seebeck coefficient measurement
    Kim, Hyun-Sik
    Gibbs, Zachary M.
    Tang, Yinglu
    Wang, Heng
    Snyder, G. Jeffrey
    [J]. APL MATERIALS, 2015, 3 (04):
  • [8] Complex oxide materials for potential thermoelectric applications
    Koumoto, K
    Terasaki, I
    Funahashi, R
    [J]. MRS BULLETIN, 2006, 31 (03) : 206 - 210
  • [9] Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
    Lin, Wenwen
    He, Jiangang
    Su, Xianli
    Zhang, Xiaomi
    Xia, Yi
    Bailey, Trevor P.
    Stoumpos, Constantinos C.
    Tan, Ganjian
    Rettie, Alexander J. E.
    Chung, Duck Young
    Dravid, Vinayak P.
    Uher, Ctirad
    Wolverton, Chris
    Kanatzidis, Mercouri G.
    [J]. ADVANCED MATERIALS, 2021, 33 (44)
  • [10] VIBRATIONAL ANHARMONICITY AND LATTICE THERMAL PROPERTIES .2.
    MACDONALD, DKC
    ROY, SK
    [J]. PHYSICAL REVIEW, 1955, 97 (03): : 673 - 676