ON THE INVERSE POWER INEQUALITY FOR THE BEREZIN NUMBER OF OPERATORS

被引:5
作者
Garayev, Mubariz [1 ,2 ]
Saltan, Suna [3 ]
Gundogdu, Dilara [3 ]
机构
[1] Natl Acad Sci Azerbaijan, Inst Math & Mech, B Vagabzade Str 9, Baku 370141, Azerbaijan
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 04期
关键词
Hardy type inequalities; Berezin number; positive operator; NUMERICAL RADIUS; BOUNDS;
D O I
10.7153/jmi-2018-12-76
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Berezin symbol (A) over tilde of operator A acting on the reproducing kernel Hilbert space H =H(Omega) over some set Omega is defined by (A) over tilde(lambda) = < A (K) over cap (H),(lambda),(K) over cap (H),(lambda)>, lambda is an element of Omega, where (K) over cap (H),(lambda) = k(H),(lambda)/parallel to k(H),(lambda)parallel to(H) is the normalized reproducing kernel of H. The Berezin number of operator A is the following number: ber(A): = sup{vertical bar(A) over tilde(lambda)vertical bar: lambda is an element of Omega}. Clearly, ber(A) <= w(A), where w(A) = sup{vertical bar >< Ax,x >vertical bar: x is an element of H, parallel to x parallel to(H) = 1} is the numerical radius of A. The power inequality for the numerical radius of Hilbert space operator A is the following: w(A(n)) <= (w(A))(n), for all n >= 1. Since ber(A) <= w(A), the following question naturally arises: is it true that ber(A(n)) <= (ber(A))(n) for any operator A and any integer n > 1 ? Although we do not solve this question, in this paper, by using some Hardy type inequality, we prove the inverse power inequality for ber(A) for positive operators on H(Omega); namely, we prove that (ber(A))(n) <= C(n,m)ber(A(n)) for any positive operator A on H(Omega), where C(n,m) > 1 is the constant depending only on n and its conjugate m, where 1/n + 1/m = 1.
引用
收藏
页码:997 / 1003
页数:7
相关论文
共 18 条
[1]   ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :56-62
[2]  
[Anonymous], 1967, INEQUALITIES
[3]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[4]  
Berezin FA., 1972, MATH USSR IZV, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[5]  
DAS N., 2010, B ACAD STINTE REPUBL, V63, P109
[6]   New inequalities similar to Hardy-Hilbert's inequality [J].
Das, Namita ;
Sahoo, Srinibas .
TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (02) :153-165
[7]   A SURVEY OF SOME RECENT INEQUALITIES FOR THE NORM AND NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02) :154-175
[8]   HARDY-HILBERT'S INEQUALITY AND POWER INEQUALITIES FOR BEREZIN NUMBERS OF OPERATORS [J].
Garayev, Mubariz T. ;
Gurdal, Mehmet ;
Okudan, Arzu .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03) :883-891
[9]  
Halmos P, 1982, HILBERT SPACE PROBLE
[10]   Non-commutative Hardy inequalities [J].
Hansen, Frank .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :1009-1016