DYNAMICAL BEHAVIOR FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATION

被引:10
作者
Li, Kuijie [1 ]
Ozawa, Tohru [2 ]
Wang, Baoxiang [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
基金
美国国家科学基金会;
关键词
Navier-Stokes equation; concentration phenomena; blowup profile; Type-I blowup solution; L-P-minimal singularity-generating data; SUITABLE WEAK SOLUTIONS; GLOBAL-SOLUTIONS; BESOV-SPACES; PARTIAL REGULARITY; WELL-POSEDNESS; ILL-POSEDNESS; INITIAL DATA; BLOW-UP; STABILITY; DECOMPOSITION;
D O I
10.3934/cpaa.2018073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study several quantitative properties of solutions to the incompressible Navier-Stokes equation in three and higher dimensions: u(t) - Delta u + u . del u + del p = 0, divu = 0, u(0, x) = u(0)(x). More precisely, for the blow up mild solutions with initial data in L-infinity(R-d) and Hd/2-1(R-d), we obtain a concentration phenomenon and blowup profile decomposition respectively. On the other hand, if the Fourier support has the form supp (uo) over cap subset of {xi is an element of R-n : xi(1) >= L} and parallel to u(0)parallel to(infinity) << L for some L > 0, then (1) has a unique global solution u is an element of C(R+, L-infinity). In 3D, we show the compactness of the set consisting of minimal-L-p singularity-generating initial data with 3 < p < infinity, furthermore, if the mild solution with data in L-p(R-3) blows up in a Type-I manner, we prove the existence of a blowup solution which is uniformly bounded in critical Besov spaces <(B)over dot>(p/2,infinity) (-1+6/p) (R-3).
引用
收藏
页码:1511 / 1560
页数:50
相关论文
共 65 条
[1]   The Navier-Stokes Equations in a Space of Bounded Functions [J].
Abe, Ken .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :849-865
[2]  
Albritton D., PREPRINT
[3]  
[Anonymous], 2002, CRC RES NOTES MATH
[4]  
[Anonymous], 1983, MONOGRAPHS MATH
[5]   On the stability of global solutions to Navier-Stokes equations in the space [J].
Auscher, P ;
Dubois, S ;
Tchamitchian, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (06) :673-697
[6]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[7]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[8]   Uniqueness Results for Weak Leray-Hopf Solutions of the Navier-Stokes System with Initial Values in Critical Spaces [J].
Barker, T. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (01) :133-160
[9]  
Barker T., PREPRINT
[10]  
Bergh J., 1976, Interpolation spaces. An introduction