Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock

被引:102
作者
Brown, R. C. [1 ,3 ]
Phillips, N. B. [1 ,4 ]
Beloy, K. [1 ]
McGrew, W. F. [1 ,2 ]
Schioppo, M. [1 ,5 ]
Fasano, R. J. [1 ,2 ]
Milani, G. [1 ,6 ,7 ]
Zhang, X. [1 ,8 ]
Hinkley, N. [1 ,2 ,4 ]
Leopardi, H. [1 ,2 ]
Yoon, T. H. [1 ,9 ]
Nicolodi, D. [1 ]
Fortier, T. M. [1 ]
Ludlow, A. D. [1 ]
机构
[1] NIST, 325 Broadway, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Georgia Tech Res Inst, Atlanta, GA 30332 USA
[4] Stable Laser Syst, Boulder, CO USA
[5] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[6] Ist Nazl Ric Metrol, Str Cacce 91, I-10135 Turin, Italy
[7] Politecn Torino, Corso Duca Abruzzi 24, I-10125 Turin, Italy
[8] Peking Univ, Sch Elect Engn & Comp Sci, Inst Quantum Elect, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
[9] Korea Univ, Dept Phys, 145 Anam Ro, Seoul 02841, South Korea
关键词
CONTINUOUS-WAVE; SAPPHIRE LASER; ATOMIC CLOCKS; UNCERTAINTY; PHYSICS; TRAPS;
D O I
10.1103/PhysRevLett.119.253001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an Yb-171 optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10(-18) level and beyond.
引用
收藏
页数:6
相关论文
共 59 条
[1]   Searching for dilaton dark matter with atomic clocks [J].
Arvanitaki, Asimina ;
Huang, Junwu ;
Van Tilburg, Ken .
PHYSICAL REVIEW D, 2015, 91 (01)
[2]  
Ashby N., 2009, P INT ASTRON UNION, V5, P414
[3]   Optical lattice induced light shifts in an Yb atomic clock [J].
Barber, Z. W. ;
Stalnaker, J. E. ;
Lemke, N. D. ;
Poli, N. ;
Oates, C. W. ;
Fortier, T. M. ;
Diddams, S. A. ;
Hollberg, L. ;
Hoyt, C. W. ;
Taichenachev, A. V. ;
Yudin, V. I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[4]  
Beloy K., IN PRESS
[5]   Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock [J].
Blatt, S. ;
Thomsen, J. W. ;
Campbell, G. K. ;
Ludlow, A. D. ;
Swallows, M. D. ;
Martin, M. J. ;
Boyd, M. M. ;
Ye, J. .
PHYSICAL REVIEW A, 2009, 80 (05)
[6]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[7]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[8]   Hyperpolarizability effects in a Sr optical lattice clock [J].
Brusch, A ;
Le Targat, R ;
Baillard, X ;
Fouché, M ;
Lemonde, P .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[9]   Direct Observation of Coherent Interorbital Spin-Exchange Dynamics [J].
Cappellini, G. ;
Mancini, M. ;
Pagano, G. ;
Lombardi, P. ;
Livi, L. ;
de Cumis, M. Siciliani ;
Cancio, P. ;
Pizzocaro, M. ;
Calonico, D. ;
Levi, F. ;
Sias, C. ;
Catani, J. ;
Inguscio, M. ;
Fallani, L. .
PHYSICAL REVIEW LETTERS, 2014, 113 (12)
[10]   Optical Clocks and Relativity [J].
Chou, C. W. ;
Hume, D. B. ;
Rosenband, T. ;
Wineland, D. J. .
SCIENCE, 2010, 329 (5999) :1630-1633