Quantum Process Tomography of a Controlled-Phase Gate for Time-Bin Qubits

被引:16
作者
Lo, Hsin-Pin [1 ]
Ikuta, Takuya [1 ]
Matsuda, Nobuyuki [1 ,2 ]
Honjo, Toshimori [1 ]
Munro, William J. [1 ]
Takesue, Hiroki [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] Tohoku Univ, Grad Sch Engn, Dept Commun Engn, Sendai, Miyagi 9808579, Japan
来源
PHYSICAL REVIEW APPLIED | 2020年 / 13卷 / 03期
关键词
ENTANGLEMENT; TELEPORTATION; FIBER;
D O I
10.1103/PhysRevApplied.13.034013
中图分类号
O59 [应用物理学];
学科分类号
摘要
Time-bin qubits, where information is encoded in a single photon at different times, have been widely used in optical-fiber- and waveguide-based quantum communications. With the recent developments in distributed quantum computation, it is logical to ask whether time-bin encoded qubits may be useful in that context. We have recently realized a time-bin qubit controlled-phase (C-phase) gate using a 2 x 2 optical switch based on a lithium-niobate waveguide, with which we demonstrated the generation of an entangled state. However, the experiment was performed with only a pair of input states and thus the functionality of the C-phase gate was not fully verified. In this research, we use quantum process tomography to establish a process fidelity of 97.1%. Furthermore, we demonstrate the controlled-NOT gate operation with a process fidelity greater than 94%. This study confirms that typical two-qubit logic gates used in quantum computational circuits can be implemented with time-bin qubits and thus it is a significant step forward for the realization of distributed quantum computation based on time-bin qubits.
引用
收藏
页数:10
相关论文
共 41 条
  • [41] Controlled Phase Flip Gate and Its Application in Low-Q Cavities by Single-Photon Input-Output Process
    Wang Bo
    Chen Qiong
    Yang Wan-Li
    Kou Su-Peng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 225 - 228